Optics and Precision Engineering, Volume. 33, Issue 2, 247(2025)

Enhanced edge feature extraction dual branch fusion network for real image dehazing

Xiongxin LI, Fengling XIA, Kaomin ZHANG, Hongliang WANG, and Tao XIE*
Author Affiliations
  • Faculty of Civil Aviation and Aeronautics,Kunming University of Science and Technology, Kunming650500,China
  • show less
    References(36)

    [1] SUN Y X, SU L, LUO Y K et al. IRDCLNet: instance segmentation of ship images based on interference reduction and dynamic contour learning in foggy scenes[J]. IEEE Transactions on Circuits and Systems for Video Technology, 32, 6029-6043(2022).

    [2] SINDAGI V A, YASARLA R et al. Prior-based domain adaptive object detection for hazy and rainy conditions[C]. Glasgow, 763-780(28).

    [3] TAN R T. Visibility in bad weather from a single image[C]. AK, 1-8(2008).

    [4] FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 27, 1-9(2008).

    [5] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 2341-2353(2011).

    [6] ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 24, 3522-3533(2015).

    [7] MENG G F, WANG Y, DUAN J Y et al. Efficient image dehazing with boundary constraint and contextual regularization[C], 617-624(2013).

    [8] CAI B L, XU X M, JIA K et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 25, 5187-5198(2016).

    [9] SONG Y D, HE Z Q, QIAN H et al. Vision transformers for single image dehazing[J]. IEEE Transactions on Image Processing, 32, 1927-1941(2023).

    [10] CHEN D D, HE M M, FAN Q N et al. Gated context aggregation network for image dehazing and deraining[C], 7, 1375-1383(2019).

    [11] LI X L, HUA Z, LI J J. Two-stage single image dehazing network using swin-transformer[J]. IET Image Processing, 16, 2518-2534(2022).

    [12] ZHANG H, PATEL V M. Densely connected pyramid dehazing network[C], 3194-3203(2018).

    [13] YANG X T, XU Z, LUO J B. Towards perceptual image dehazing by physics-based disentanglement and adversarial training[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 32, 7486-7492(2018).

    [14] ZHAO S Y, ZHANG L, SHEN Y et al. RefineDNet: a weakly supervised refinement framework for single image dehazing[J]. IEEE Transactions on Image Processing, 30, 3391-3404(2021).

    [15] MIDDLETON W E K[M]. Vision Through The Atmosphere(1952).

    [17] DENG J, DONG W, SOCHER R et al. ImageNet: a large-scale hierarchical image database[C], 248-255(2009).

    [19] LI B Y, REN W Q, FU D P et al. Benchmarking single image dehazing and beyond[J]. IEEE Transactions on Image Processing(2018).

    [20] ZHAO S Y, ZHANG L, HUANG S Y et al. Evaluation of defogging: a real-world benchmark dataset, a new criterion and baselines[C], 8, 1840-1845(2019).

    [21] ANCUTI C, ANCUTI C O, DE VLEESCHOUWER C. D-HAZY: a dataset to evaluate quantitatively dehazing algorithms[C], 2226-2230(2016).

    [22] AGRAWAL S C, JALAL A S. A comprehensive review on analysis and implementation of recent image dehazing methods[J]. Archives of Computational Methods in Engineering, 29, 4799-4850(2022).

    [23] ZHANG R, ISOLA P, EFROS A A et al. The unreasonable effectiveness of deep features as a perceptual metric[C], 586-595(2018).

    [24] VENKATANATH N, PRANEETH D, BH M C et al. Blind image quality evaluation using perception based features[C], 1-6(2015).

    [25] GU K, TAO D C, QIAO J F et al. Learning a No-reference quality assessment model of enhanced images with big data[J]. IEEE Transactions on Neural Networks and Learning Systems, 29, 1301-1313(2018).

    [26] MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 21, 4695-4708(2012).

    [27] CHOI L K, YOU J, BOVIK A C. Referenceless prediction of perceptual fog density and perceptual image defogging[J]. IEEE Transactions on Image Processing, 24, 3888-3901(2015).

    [28] ZHAO S Y, ZHANG L, HUANG S Y et al. Dehazing evaluation: real-world benchmark datasets, criteria, and baselines[J]. IEEE Transactions on Image Processing, 29, 6947-6962(2020).

    [29] ZHANG L, ZHANG L, MOU X Q et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 20, 2378-2386(2011).

    [30] BERMAN D, TREIBITZ T, AVIDAN S. Non-local image dehazing[C], 1674-1682(2016).

    [31] CHEN Z Y, WANG Y C, YANG Y et al. PSD: principled synthetic-to-real dehazing guided by physical priors[C], 7176-7185(2021).

    [32] LI B Y, PENG X L, WANG Z Y et al. AOD-net: all-in-one dehazing network[C], 4780-4788(2017).

    [33] QU Y Y, CHEN Y Z, HUANG J Y et al. Enhanced Pix2pix dehazing network[C], 8152-8160(2019).

    [34] QIN X, WANG Z L, BAI Y C et al. FFA-net: feature fusion attention network for single image dehazing[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 11908-11915(2020).

    [35] REN W Q, PAN J S, ZHANG H et al. Single image dehazing via multi-scale convolutional neural networks with holistic edges[J]. International Journal of Computer Vision, 128, 240-259(2020).

    [36] DONG H, PAN J S, XIANG L et al. Multi-scale boosted dehazing network with dense feature fusion[C], 2154-2164(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xiongxin LI, Fengling XIA, Kaomin ZHANG, Hongliang WANG, Tao XIE. Enhanced edge feature extraction dual branch fusion network for real image dehazing[J]. Optics and Precision Engineering, 2025, 33(2): 247

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 26, 2024

    Accepted: --

    Published Online: Apr. 30, 2025

    The Author Email:

    DOI:10.37188/OPE.20253302.0247

    Topics