Optics and Precision Engineering, Volume. 33, Issue 2, 247(2025)

Enhanced edge feature extraction dual branch fusion network for real image dehazing

Xiongxin LI, Fengling XIA, Kaomin ZHANG, Hongliang WANG, and Tao XIE*
Author Affiliations
  • Faculty of Civil Aviation and Aeronautics,Kunming University of Science and Technology, Kunming650500,China
  • show less
    Figures & Tables(14)
    Structure of enhanced-edge-feature dual-branch fusion dehazing network
    Wavelet Edge Refinement Block(WERB)
    Hybrid Feature Extraction Block(HFEB)
    Selective Kernel Feature Fusion(SKFF)
    Dehazing results of different methods in the SOTS dataset
    Dehazing results for different methods in the Middlebury dataset
    Performance comparison of different methods for PSNR and SSIM evaluation
    Dehazing results of different methods in RTTS dataset
    Dehazing results of different methods in the BeDDE dataset
    Qualitative comparison of processing results for different network branches
    • Table 1. Quantitative comparison in the SOTS dataset and the Middlebury dataset

      View table
      View in Article

      Table 1. Quantitative comparison in the SOTS dataset and the Middlebury dataset

      MethodsRESIDE-SOTSMIDDLEBURY
      PSNR ↑SSIM ↑LPIPS ↓PSNR ↑SSIM ↑LPIPS ↓
      DCP18.885 80.827 20.10614.731 90.790 50.205
      NLD18.627 60.847 50.13313.818 10.771 80.222
      PSD14.606 20.791 70.13512.133 10.738 30.291
      Dehamer16.132 20.857 70.15212.788 30.741 60.125
      FFA-Net17.009 60.866 40.09114.035 90.744 70.231
      DehazeNet18.855 80.861 90.09313.821 20.788 70.198
      AOD-Net19.591 10.860 80.08913.186 30.777 30.223
      MSBDN19.236 50.890 50.07415.386 50.814 30.191
      MSCNN19.675 10.848 10.08713.694 80.791 20.199
      EPDN20.432 20.878 70.10914.933 30.800 40.183
      RefineDNet20.839 40.885 20.08414.222 10.792 50.214
      Ours22.096 10.916 00.07914.857 90.806 50.189
    • Table 2. Quantitative comparisons in RTTS datasets

      View table
      View in Article

      Table 2. Quantitative comparisons in RTTS datasets

      MethodsPIQE ↓NIQE ↓BRISQUE ↓FADE ↓Entropy ↑
      Hazy36.2103.64839.8483.7557.057
      DehazeNet29.3623.39826.0281.6817.284
      AOD-Net31.8753.61629.1851.2597.199
      PSD27.1893.19021.3261.3717.591
      MSCNN24.1273.42723.1111.3667.383
      FFA-Net34.9723.58236.7543.2387.181
      EPDN23.4243.55425.3191.0517.454
      RefineDNet27.7093.36320.7391.5217.250
      Ours21.4713.25621.1351.2347.436
    • Table 3. Quantitative comparisons in the BeDDE dataset

      View table
      View in Article

      Table 3. Quantitative comparisons in the BeDDE dataset

      MethodRI ↑VI ↑
      DCP0.943 70.884 0
      PSD0.945 20.877 3
      DehazeNet0.957 20.880 6
      AOD-Net0.949 70.874 0
      FFA-Net0.952 30.872 5
      EPDN0.941 40.876 0
      MSCNN0.959 20.881 7
      RefineDNet0.962 00.890 1
      Ours0.971 10.900 3
    • Table 4. Ablation study

      View table
      View in Article

      Table 4. Ablation study

      TR Branch××
      FE Branch××
      PSNR ↑20.508 021.441 621.526 422.187 2
      SSIM ↑0.900 10.902 20.913 30.920 2
      LPIPS ↓0.0840.0900.0770.073
      PIQE ↓28.88924.74326.24121.471
      NIQE ↓3.3133.0283.2153.256
      BRISQUE ↓20.73921.90622.26721.135
      FADE ↓1.3771.1791.2631.234
      Entropy ↑7.1017.3397.2587.436
    Tools

    Get Citation

    Copy Citation Text

    Xiongxin LI, Fengling XIA, Kaomin ZHANG, Hongliang WANG, Tao XIE. Enhanced edge feature extraction dual branch fusion network for real image dehazing[J]. Optics and Precision Engineering, 2025, 33(2): 247

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 26, 2024

    Accepted: --

    Published Online: Apr. 30, 2025

    The Author Email:

    DOI:10.37188/OPE.20253302.0247

    Topics