Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1622003(2025)

Weld Defect Detection Method Based on Improved YOLOv9

Shengjun Xu1,2, Yiheng Hu1,2、*, Erhu Liu1,2, Ya Shi1,2, Xiaohan Li1,2, and Zongfang Ma1,2
Author Affiliations
  • 1College of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi , China
  • 2Key Laboratory of Intelligent Automation Technology for Building Manufacturing, Xi’an 710055, Shaanxi , China
  • show less
    References(25)

    [1] Chen H B, Xiao R Q, Chen S B. Progress and trends towards visual perception technologies in intelligent robotic welding[J]. Transactions of the China Welding Institution, 45, 1-9(2024).

    [2] Zhang Z F, Chen S B, Zhang Y M et al. Research progress and prospect of welding intelligent monitoring technology[J]. Transactions of the China Welding Institution, 45, 10-20, 70(2024).

    [8] Dai Z, Liu X J, Pan Q. Defect identification algorithm for weld X-ray images based on the CCBFE-RCNN model[J]. Transactions of the China Welding Institution, 46, 24-33(2025).

    [11] Zhang H Z, Yang R, Deng X et al. An infrared defect target detection algorithm based on improved SSD[J]. Laser & Infrared, 54, 1885-1893(2024).

    [16] Wang H J, Lin N, Lin Z C et al. X-ray pipe weld detection algorithm of improved YOLO[J]. Journal of Huaqiao University (Natural Sciences), 45, 766-775(2024).

    Tools

    Get Citation

    Copy Citation Text

    Shengjun Xu, Yiheng Hu, Erhu Liu, Ya Shi, Xiaohan Li, Zongfang Ma. Weld Defect Detection Method Based on Improved YOLOv9[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1622003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Jan. 23, 2025

    Accepted: Mar. 5, 2025

    Published Online: Aug. 8, 2025

    The Author Email: Yiheng Hu (1214119126@qq.com)

    DOI:10.3788/LOP250568

    CSTR:32186.14.LOP250568

    Topics