Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1622003(2025)
Weld Defect Detection Method Based on Improved YOLOv9
[1] Chen H B, Xiao R Q, Chen S B. Progress and trends towards visual perception technologies in intelligent robotic welding[J]. Transactions of the China Welding Institution, 45, 1-9(2024).
[2] Zhang Z F, Chen S B, Zhang Y M et al. Research progress and prospect of welding intelligent monitoring technology[J]. Transactions of the China Welding Institution, 45, 10-20, 70(2024).
[8] Dai Z, Liu X J, Pan Q. Defect identification algorithm for weld X-ray images based on the CCBFE-RCNN model[J]. Transactions of the China Welding Institution, 46, 24-33(2025).
[10] Farhadi A, Redmon J. YOLOv3: an incremental improvement[EB/OL]. https:∥arxiv.org/abs/1804.02767
[11] Zhang H Z, Yang R, Deng X et al. An infrared defect target detection algorithm based on improved SSD[J]. Laser & Infrared, 54, 1885-1893(2024).
[16] Wang H J, Lin N, Lin Z C et al. X-ray pipe weld detection algorithm of improved YOLO[J]. Journal of Huaqiao University (Natural Sciences), 45, 766-775(2024).
Get Citation
Copy Citation Text
Shengjun Xu, Yiheng Hu, Erhu Liu, Ya Shi, Xiaohan Li, Zongfang Ma. Weld Defect Detection Method Based on Improved YOLOv9[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1622003
Category: Optical Design and Fabrication
Received: Jan. 23, 2025
Accepted: Mar. 5, 2025
Published Online: Aug. 8, 2025
The Author Email: Yiheng Hu (1214119126@qq.com)
CSTR:32186.14.LOP250568