Chinese Journal of Lasers, Volume. 52, Issue 6, 0600003(2025)

Local Geometric Information Representation and Uncertainty Analysis in LiDAR SLAM

Kai Huang1, Junqiao Zhao2、*, and Tiantian Feng1
Author Affiliations
  • 1College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China
  • 2School of Computer Science and Technology, Tongji University, Shanghai 200092, China
  • show less
    Figures & Tables(16)
    Illustration of the LOAM framework
    Illustration of the LIO framework
    Recent studies based on FAST-LIO2
    Characterization of local geometric information of single-frame point clouds in some mainstream LiDAR SLAM systems
    Characterization of local geometric information of map in some mainstream LiDAR SLAM systems
    Structure of the map data in some mainstream LiDAR SLAM systems
    Illustration of the point uncertainty model
    Uncertainty models of point cloud in some mainstream LiDAR SLAM systems
    Illustration of single-frame point cloud on NTU VIRAL sequence spms_03. The points are colored according to their uncertainty
    Mapping comparison between LOG-LIO2 and FAST-LIO2 based on localization results in the M2DGR sequence street_07 at the same point cloud resolution
    • Table 1. Comparison of different LiDAR SLAM algorithms for experiments

      View table

      Table 1. Comparison of different LiDAR SLAM algorithms for experiments

      Name of the algorithm

      Scan points

      representation

      MapUncertainty
      StructureRepresentationFactorPropagation
      FAST-LIO255Coordinateikd-treeSingle pointIsotropic noise
      Faster-LIO5780CoordinateiVOXSingle pointIsotropic noise
      Point-LIO81CoordinateiVOXSingle pointIsotropic noise
      LOG-LIO59Coordinate, normalikd-treePoints distributionIsotropic noise
      PV-LIOCoordinateAdaptive voxelPoints distributionRange, bearingBALM75
      LOG-LIO282Coordinate, normalAdaptive voxel

      Points distribution,

      normal

      Range, bearingIncremental

      Incident angle,

      roughness

    • Table 2. Details of the M2DGR, NTU VIRAL, and Newer College datasets

      View table

      Table 2. Details of the M2DGR, NTU VIRAL, and Newer College datasets

      Dataset

      Mobile

      platform

      LiDAR

      f of

      IMU /Hz

      Ground truthEnvironmentsDuration /s
      Typef /HzMinMax
      M2DGR116Wheeled robotVelodyne-3210150RTK, 3D laser tracker

      Indoor,

      outdoor

      1271227
      NTU VIRAL122UAVOuster-16103853D laser tracker181583
      Newer College124HandheldOuster-64101006-DoF ICP1202180
    • Table 3. Experimental results on NTU VIRAL dataset: RMSE at specified map resolutions for each algorithm

      View table

      Table 3. Experimental results on NTU VIRAL dataset: RMSE at specified map resolutions for each algorithm

      AlgorithmSpecified map resolutionRMSE /m
      LOG-LIO2Adaptive0.039
      PV-LIOAdaptive0.044
      LOG-LIO0.5 m0.045
      Point-LIO0.5 m0.041
      Faster-LIO0.5 m0.084
      FAST-LIO20.75 m0.047
      0.50 m0.039
      0.25 m0.045
    • Table 4. Experimental results on M2DGR and Newer College datasets: RMSE at specified map resolutions for each algorithm

      View table

      Table 4. Experimental results on M2DGR and Newer College datasets: RMSE at specified map resolutions for each algorithm

      AlgorithmSpecified map resolutionRMSE /m
      M2DGRNewer College
      LOG-LIO2Adaptive0.6260.219
      PV-LIOAdaptive0.7470.242
      LOG-LIO0.4 m0.6820.275
      Point-LIO0.4 m0.7270.266
      Faster-LIO0.4 m1.1150.237
      FAST-LIO20.6 m0.9430.254
      0.4 m1.0280.254
      0.2 m1.1100.265
    • Table 5. Experimental results on NTU VIRAL dataset: average running time at specified map resolutions for each algorithm

      View table

      Table 5. Experimental results on NTU VIRAL dataset: average running time at specified map resolutions for each algorithm

      AlgorithmSpecified map resolutionRunning time /ms
      LOG-LIO2Adaptive26.165
      PV-LIOAdaptive28.536
      LOG-LIO0.5 m28.428
      Point-LIO0.5 m11.367
      Faster-LIO0.5 m6.655
      FAST-LIO20.75 m9.017
      0.50 m12.036
      0.25 m18.036
    • Table 6. Experimental results on M2DGR and Newer College datasets: RMSE at specified map resolutions for each algorithm

      View table

      Table 6. Experimental results on M2DGR and Newer College datasets: RMSE at specified map resolutions for each algorithm

      Dataset

      Specified map

      resolution

      Average running time /ms
      M2DGRNewer College
      LOG-LIO2Adaptive45.37657.820
      PV-LIOAdaptive54.61062.965
      LOG-LIO0.4 m58.31946.932
      Point-LIO0.4 m25.51425.488
      Faster-LIO0.4 m12.89414.315
      FAST-LIO20.6 m19.35016.748
      0.4 m29.03823.482
      0.2 m46.21045.677
    Tools

    Get Citation

    Copy Citation Text

    Kai Huang, Junqiao Zhao, Tiantian Feng. Local Geometric Information Representation and Uncertainty Analysis in LiDAR SLAM[J]. Chinese Journal of Lasers, 2025, 52(6): 0600003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Jul. 2, 2024

    Accepted: Nov. 18, 2024

    Published Online: Mar. 18, 2025

    The Author Email: Junqiao Zhao (zhaojunqiao@tongji.edu.cn)

    DOI:10.3788/CJL241023

    CSTR:32183.14.CJL241023

    Topics