Laser & Optoelectronics Progress, Volume. 58, Issue 8, 0815002(2021)

Aluminum Plate Defect Image Segmentation Using Improved Generative Adversarial Networks for Eddy Current Detection

Qi Zhang1,2, Bo Ye1,2、*, Siqi Luo1,2, and Honggui Cao1,2
Author Affiliations
  • 1Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • 2Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • show less
    References(17)

    [6] Yuan X C, Wu L S, Chen H W. Rail image segmentation based on Otsu threshold method[J]. Optics and Precision Engineering, 24, 1772-1781(2016).

    [8] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]. //2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA., 3431-3440(2015).

    [9] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. //Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science., 9351, 234-241(2015).

    [10] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial nets[C]. //Proceedings of the 27th International Conference on Neural Information Processing Systems, December 8-13, 2014, Montreal, Quebec. New York: Curran Associates, 2, 2672-2680(2014).

    Tools

    Get Citation

    Copy Citation Text

    Qi Zhang, Bo Ye, Siqi Luo, Honggui Cao. Aluminum Plate Defect Image Segmentation Using Improved Generative Adversarial Networks for Eddy Current Detection[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0815002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 18, 2020

    Accepted: Sep. 9, 2020

    Published Online: Apr. 16, 2021

    The Author Email: Bo Ye (yeripple@hotmail.com)

    DOI:10.3788/LOP202158.0815002

    Topics