Laser & Optoelectronics Progress, Volume. 58, Issue 8, 0815002(2021)

Aluminum Plate Defect Image Segmentation Using Improved Generative Adversarial Networks for Eddy Current Detection

Qi Zhang1,2, Bo Ye1,2、*, Siqi Luo1,2, and Honggui Cao1,2
Author Affiliations
  • 1Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • 2Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • show less
    Figures & Tables(11)
    Generator network model
    Architecture of attention mechanism
    Discriminator network model
    Aluminum plate defect image segmentation using improved generative adversarial networks for eddy current detection
    Eddy current testing experiment platform
    Schematic of test-piece dimension
    Eddy current inspection images of aluminum plate defect
    Segmentation results of different methods. (a) Original image; (b) truth image; (c) Otsu method; (d) FCN-8s model; (e) FCN-32s model; (f) U-Net model; (g) proposed method
    Segmentation results of eddy current testing images under different signal-to-noise ratios. (a) Original image; (b) truth image; (c) Otsu method; (d) FCN-8s model; (e) FCN-32s model; (f) U-Net model; (g) proposed method
    • Table 1. Comparison of segmentation results using different methods

      View table

      Table 1. Comparison of segmentation results using different methods

      MethodPrecisionRecallF1
      Otsu0.90060.64520.7518
      FCN-8s0.86400.79100.826
      FCN-32s0.78400.84340.813
      U-Net0.76090.85020.803
      Proposed method0.87990.97750.926
    • Table 2. Comparison of segmentation methods for eddy current testing image under different signal-to-noise ratios

      View table

      Table 2. Comparison of segmentation methods for eddy current testing image under different signal-to-noise ratios

      MethodSignal-to-noise ratioPrecisionRecallF1
      Otsu50 dB0.66480.82590.7366
      60 dB0.85880.79360.8249
      70 dB0.82220.81420.8182
      FCN-8s50 dB0.71200.78350.7460
      60 dB0.81550.89680.8539
      70 dB0.93690.80110.8637
      FCN-32s50 dB0.77730.89620.8325
      60 dB0.73480.90500.8111
      70 dB0.91550.74640.8223
      U-Net50 dB0.69940.79520.7442
      60 dB0.86850.81660.8418
      70 dB0.92360.78820.8505
      Proposed method50 dB0.87250.96940.9184
      60 dB0.86960.98940.9256
      70 dB0.87100.97940.9220
    Tools

    Get Citation

    Copy Citation Text

    Qi Zhang, Bo Ye, Siqi Luo, Honggui Cao. Aluminum Plate Defect Image Segmentation Using Improved Generative Adversarial Networks for Eddy Current Detection[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0815002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 18, 2020

    Accepted: Sep. 9, 2020

    Published Online: Apr. 16, 2021

    The Author Email: Bo Ye (yeripple@hotmail.com)

    DOI:10.3788/LOP202158.0815002

    Topics