Laser & Optoelectronics Progress, Volume. 58, Issue 8, 0815002(2021)
Aluminum Plate Defect Image Segmentation Using Improved Generative Adversarial Networks for Eddy Current Detection
Fig. 4. Aluminum plate defect image segmentation using improved generative adversarial networks for eddy current detection
Fig. 8. Segmentation results of different methods. (a) Original image; (b) truth image; (c) Otsu method; (d) FCN-8s model; (e) FCN-32s model; (f) U-Net model; (g) proposed method
Fig. 9. Segmentation results of eddy current testing images under different signal-to-noise ratios. (a) Original image; (b) truth image; (c) Otsu method; (d) FCN-8s model; (e) FCN-32s model; (f) U-Net model; (g) proposed method
|
|
Get Citation
Copy Citation Text
Qi Zhang, Bo Ye, Siqi Luo, Honggui Cao. Aluminum Plate Defect Image Segmentation Using Improved Generative Adversarial Networks for Eddy Current Detection[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0815002
Category: Machine Vision
Received: Aug. 18, 2020
Accepted: Sep. 9, 2020
Published Online: Apr. 16, 2021
The Author Email: Bo Ye (yeripple@hotmail.com)