Chinese Journal of Lasers, Volume. 48, Issue 8, 0802001(2021)
Research Progress of Ultrafast Laser-Induced Nanowires Joining Technology
[1] Duan X, Huang Y, Cui Y et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J]. Nature, 409, 66-69(2001).
[2] Desai S B, Madhvapathy S R, Sachid A B et al. MoS2 transistors with 1-nanometer gate lengths[J]. Science, 354, 99-102(2016).
[3] Cao Q, Tersoff J, Farmer D B et al. Carbon nanotube transistors scaled to a 40-nanometer footprint[J]. Science, 356, 1369-1372(2017).
[4] Zhou Y. Microjoining and nanojoining[M], 545-576(2008).
[5] Zhou Y, Hu A. From microjoining to nanojoining[J]. The Open Surface Science Journal, 3, 32-41(2011).
[6] Hu A M, Janczak-Rusch J, Sano T. Joining technology innovations at the macro, micro, and nano levels[J]. Applied Sciences, 9, 3568(2019).
[7] Chen C X, Yan L J, Kong E S W et al. Ultrasonic nanowelding of carbon nanotubes to metal electrodes[J]. Nanotechnology, 17, 2192-2197(2006).
[9] Liu L, Shen D Z, Zou G S et al. Cold welding of Ag nanowires by large plastic deformation[J]. Scripta Materialia, 114, 112-116(2016).
[10] Ye H K, Gu Z Y, Yu T et al. Integrating nanowires with substrates using directed assembly and nanoscale soldering[J]. IEEE Transactions on Nanotechnology, 5, 62-66(2006).
[12] Xu S, Tian M, Wang J et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam[J]. Small, 1, 1221-1229(2005).
[13] Bo A, Alarco J, Zhu H Y et al. Nanojoint formation between ceramic titanate nanowires and spot melting of metal nanowires with electron beam[J]. ACS Applied Materials & Interfaces, 9, 9143-9151(2017).
[14] Dhal S, Chatterjee S, Sarkar S et al. Nano-welding and junction formation in hydrogen titanate nanowires by low-energy nitrogen ion irradiation[J]. Nanotechnology, 26, 235601(2015).
[15] Rajbhar M K, Möller W, Satpati B et al. Broad beam-induced fragmentation and joining of tungsten oxide nanorods: implications for nanodevice fabrication and the development of fusion reactors[J]. ACS Applied Nano Materials, 3, 9064-9075(2020).
[16] Khan M R, Rauf Khan M A, Ahmad I et al. Joining of individual silicon carbide nanowires via proton beam irradiation[J]. Current Nanoscience, 14, 354-359(2018).
[17] Zhang L Q, Tang Y S, Peng Q M et al. Ceramic nanowelding[J]. Nature Communications, 9, 1-7(2018).
[18] Dai S W, Li Q, Liu G P et al. Laser-induced single point nanowelding of silver nanowires[J]. Applied Physics Letters, 108, 121103(2016).
[19] Li Q, Liu G P, Yang H B et al. Optically controlled local nanosoldering of metal nanowires[J]. Applied Physics Letters, 108, 193101(2016).
[20] Liu G P, Li Q, Qiu M. Sacrificial solder based nanowelding of ZnO nanowires[J]. Journal of Physics: Conference Series, 680, 012027(2016).
[21] Huang J X, Kaner R B. Flash welding of conducting polymer nanofibres[J]. Nature Materials, 3, 783-786(2004).
[23] Nian Q, Saei M, Xu Y et al. Crystalline nanojoining silver nanowire percolated networks on flexible substrate[J]. ACS Nano, 9, 10018-10031(2015).
[24] González-Rubio G, González-Izquierdo J, Bañares L et al. Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods[J]. Nano Letters, 15, 8282-8288(2015).
[25] Salmon A R, Kleemann M E, Huang J Y et al. Light-induced coalescence of plasmonic dimers and clusters[J]. ACS Nano, 14, 4982-4987(2020).
[28] Zhang G D, Cheng G H, Zhang W. Progress in ultrafast laser space-selective welding[J]. Chinese Optics, 13, 1209-1223(2020).
[29] Theogene B, Huang C C, Cheng Y et al. Temperature monitoring for femtosecond laser welded interconnection of MWCNT regular structure on PET substrate[J]. Ferroelectrics, 563, 62-76(2020).
[30] Maier S. Plasmonics: fundamentals and applications[M]. Springer Science & Business Media, 21-34(2007).
[31] Huang H, Liu L, Peng P et al. Controlled joining of Ag nanoparticles with femtosecond laser radiation[J]. Journal of Applied Physics, 112, 123519(2012).
[32] Herrmann L O, Valev V K, Tserkezis C et al. Threading plasmonic nanoparticle strings with light[J]. Nature Communications, 5, 4568(2014).
[33] Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat[J]. Laser & Photonics Reviews, 7, 171-187(2013).
[34] Baffou G, Quidant R, Girard C. Heat generation in plasmonic nanostructures: influence of morphology[J]. Applied Physics Letters, 94, 153109(2009).
[35] Jauffred L, Samadi A, Klingberg H et al. Plasmonic heating of nanostructures[J]. Chemical Reviews, 119, 8087-8130(2019).
[36] Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. Journal of Heat Transfer, 127, 1167-1173(2005).
[37] Ren X Y, Li X, Wei F Q et al. Thermal field simulation of Ag nanoparticles induced by femtosecond laser[J]. Integrated Ferroelectrics, 208, 128-137(2020).
[38] Hu A, Zhou Y, Duley W W. Femtosecond laser-induced nanowelding: fundamentals and applications[J]. The Open Surface Science Journal, 3, 42-49(2011).
[39] Kuppe C, Rusimova K R, Ohnoutek L et al. “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures[J]. Advanced Optical Materials, 8, 2070001(2020).
[40] Bell A P, Fairfield J A, McCarthy E K et al. Quantitative study of the photothermal properties of metallic nanowire networks[J]. ACS Nano, 9, 5551-5558(2015).
[41] Sanchot A, Baffou G, Marty R et al. Plasmonic nanoparticle networks for light and heat concentration[J]. ACS Nano, 6, 3434-3440(2012).
[42] Liu L, Peng P, Hu A M et al. Highly localized heat generation by femtosecond laser induced plasmon excitation in Ag nanowires[J]. Applied Physics Letters, 102, 073107(2013).
[43] Ghenuche P, Cherukulappurath S, Taminiau T H et al. Spectroscopic mode mapping of resonant plasmon nanoantennas[J]. Physical Review Letters, 101, 116805(2008).
[44] Liang T S, Shi P P, Su S Q et al. Near-perfect healing natures of silver five-fold twinned nanowire[J]. Computational Materials Science, 183, 109796(2020).
[45] Lin L C, Liu L, Peng P et al. In situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation[J]. Nanotechnology, 27, 125201(2016).
[46] Ding S, Tian Y H, Jiang Z et al. Joining of silver nanowires by femtosecond laser irradiation method[J]. Materials Transactions, 56, 981-983(2015).
[47] Hu A, Deng G L, Courvoisier S et al. Femtosecond laser induced surface melting and nanojoining for plasmonic circuits[J]. Proceedings of SPIE, 8809, 880907(2013).
[48] Wan H, Gui C Q, Chen D et al. Scattering force and heating effect in laser-induced plasmonic welding of silver nanowire junctions[J]. Applied Optics, 59, 2186-2191(2020).
[50] Deng Y B, Bai Y F, Yu Y C et al. Laser nanojoining of copper nanowires[J]. Journal of Laser Applications, 31, 022414(2019).
[51] Li Y Y, Li Y T, Feng L L et al. Metal alloy nanowire joining induced by femtosecond laser heating: a hybrid atomistic-continuum interpretation[J]. International Journal of Heat and Mass Transfer, 150, 119287(2020).
[52] Lin L C, Zou G S, Liu L et al. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units[J]. Applied Physics Letters, 108, 203107(2016).
[53] Xiao M, Lin L, Xing S et al. Nanojoining and tailoring of current-voltage characteristics of metal-P type semiconductor nanowire heterojunction by femtosecond laser irradiation[J]. Journal of Applied Physics, 127, 184901(2020).
[54] Xing S L, Lin L C, Zou G S et al. Two-photon absorption induced nanowelding for assembling ZnO nanowires with enhanced photoelectrical properties[J]. Applied Physics Letters, 115, 103101(2019).
[55] Lin L C, Liu L, Musselman K et al. Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory[J]. Advanced Functional Materials, 26, 5979-5986(2016).
[57] Ha J, Lee B J, Hwang D J et al. Femtosecond laser nanowelding of silver nanowires for transparent conductive electrodes[J]. RSC Advances, 6, 86232-86239(2016).
Get Citation
Copy Citation Text
Luchan Lin, Songling Xing, Jinpeng Huo, Yu Xiao, Peng Peng, Daozhi Shen, Lei Liu, Guisheng Zou. Research Progress of Ultrafast Laser-Induced Nanowires Joining Technology[J]. Chinese Journal of Lasers, 2021, 48(8): 0802001
Category: laser manufacturing
Received: Nov. 30, 2020
Accepted: Jan. 11, 2021
Published Online: Apr. 13, 2021
The Author Email: Lin Luchan (linlc@163.com)