Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1812002(2024)

Multimodal Fusion Odometer Based on Deep Learning and Kalman Filter

Long Li1, Yi An1,2、*, Lirong Xie1, Zhuo Sun2, and Hongxiang Dong1
Author Affiliations
  • 1School of Electrical Engineering, Xinjiang University, Urumqi 830046, Xinjiang, China
  • 2School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • show less
    Figures & Tables(11)
    Schematic diagram of the system structure
    Generated color point cloud
    Twin feature pyramid
    Pose estimation network
    Pose optimization network
    Lidar sensors and color camera
    Comparison of effects of each module of the odometer. (a) Trajectory diagram of the odometer on sequence 09; (b) trajectory diagram of the odometer on sequence 07
    Trajectory comparison and point cloud map. (a) Comparison of estimated trajectories by algorithms; (b) point cloud map
    Comparison chart of trajectories predicted by algorithms in the x, y, and z axes
    • Table 1. Comparison of prediction errors of different modules

      View table

      Table 1. Comparison of prediction errors of different modules

      SequenceCPCP+IMUCP+IMU+ESKF
      trel /%rrel /[(º)/(100 m)]trel /%rrel /[(º)/(100 m)]trel /%rrel /[(º)/(100 m)]
      Mean0.800.470.680.420.660.41
      000.720.400.760.450.750.43
      010.920.300.340.210.330.20
      020.960.500.820.340.800.34
      030.701.290.541.010.530.99
      040.420.290.330.350.300.35
      050.680.350.670.440.660.43
      060.540.260.530.230.510.22
      070.680.420.500.370.470.35
      081.260.541.190.541.180.52
      090.830.320.850.310.830.31
      101.160.510.960.410.940.40
    • Table 2. Comparison of prediction errors of different odometers

      View table

      Table 2. Comparison of prediction errors of different odometers

      SequenceLO-NetPWCLO-NetMVLODEMODVL-SLAMLMVOProposed
      trel /%rrel /[(º)/(100 m)]trel /%rrel /[(º)/(100 m)]trel /%rrel /[(º)/(100 m)]trel /%rrel /[(º)/(100 m)]trel/%rrel /[(º)/(100 m)]trel /%rrel /[(º)/(100 m)]trel/%rrel/[(º)/(100 m)]
      Mean1.330.691.410.673.501.441.160.980.940.660.41
      001.470.723.870.652.771.781.050.930.990.750.43
      011.360.470.720.373.760.801.871.471.870.330.20
      021.520.711.260.624.822.260.931.111.380.800.34
      031.030.661.090.842.751.390.990.920.650.530.99
      040.510.650.610.351.811.481.230.670.420.300.35
      051.040.691.030.503.811.431.040.820.720.660.43
      060.710.501.200.504.031.240.960.920.610.510.22
      071.700.890.940.753.611.411.161.260.560.470.35
      082.120.771.720.772.751.611.241.321.271.180.52
      091.370.580.830.353.761.921.170.661.060.830.31
      101.800.932.211.704.650.511.140.700.830.940.40
    Tools

    Get Citation

    Copy Citation Text

    Long Li, Yi An, Lirong Xie, Zhuo Sun, Hongxiang Dong. Multimodal Fusion Odometer Based on Deep Learning and Kalman Filter[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1812002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Nov. 24, 2023

    Accepted: Jan. 26, 2024

    Published Online: Sep. 14, 2024

    The Author Email: Yi An (anyi@dlut.edu.cn)

    DOI:10.3788/LOP232559

    CSTR:32186.14.LOP232559

    Topics