Chinese Journal of Lasers, Volume. 47, Issue 2, 207010(2020)

Optogenetics Based on Light-Gated Protein-Protein Interactions and Its Applications

Huang Peiyuan1, Song Yutong1, Zhang Ning1, Zhao Zhihao2, and Duan Liting1、*
Author Affiliations
  • 1Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 123456, China
  • 2West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
  • show less
    References(52)

    [1] Davis S J, Vener A V, Vierstra R D. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria[J]. Science, 286, 2517-2520(1999).

    [3] Rockwell N C, Su Y S, Lagarias J C. Phytochrome structure and signaling mechanisms[J]. Annual Review of Plant Biology, 57, 837-858(2006).

    [4] Sharrock R A, Quail P H. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family[J]. Genes & Development, 3, 1745-1757(1989).

    [5] Wagner J R, Brunzelle J S, Forest K T et al. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome[J]. Nature, 438, 325-331(2005).

    [6] Müller K, Engesser R, Metzger S et al. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells[J]. Nucleic Acids Research, 41, e77(2013).

    [7] Shimizu-Sato S, Huq E, Tepperman J M et al. A light-switchable gene promoter system[J]. Nature Biotechnology, 20, 1041-1044(2002).

    [8] Levskaya A, Weiner O D, Lim W A et al. Spatiotemporal control of cell signalling using a light-switchable protein interaction[J]. Nature, 461, 997-1001(2009).

    [9] Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors[J]. Chemical Reviews, 103, 2203-2238(2003).

    [10] Lin C T, Todo T. The cryptochromes[J]. Genome Biology, 6, 220(2005).

    [11] Liu H, Yu X, Li K et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis[J]. Science, 322, 1535-1539(2008).

    [12] Kennedy M J, Hughes R M, Peteya L A et al. Rapid blue-light: mediated induction of protein interactions in living cells[J]. Nature Methods, 7, 973-975(2010).

    [13] Che D L, Duan L, Zhang K et al. The dual characteristics of light-induced cryptochrome 2, homo-oligomerization and heterodimerization, for optogenetic manipulation in mammalian cells[J]. ACS Synthetic Biology, 4, 1124-1135(2015).

    [14] Taslimi A, Vrana J D, Chen D et al. An optimized optogenetic clustering tool for probing protein interaction and function[J]. Nature Communications, 5, 4925(2014).

    [15] Duan L T, Hope J, Ong Q et al. Understanding CRY2 interactions for optical control of intracellular signaling[J]. Nature Communications, 8, 547(2017).

    [16] Park H, Kim N Y, Lee S et al. Optogenetic protein clustering through fluorescent protein tagging and extension of CRY2[J]. Nature Communications, 8, 30(2017).

    [17] Liscum E, Briggs W R. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli[J]. The Plant Cell, 7, 473-485(1995).

    [18] Christie J M, Swartz T E, Bogomolni R A et al. Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function[J]. The Plant Journal: for Cell And Molecular Biology, 32, 205-219(2002).

    [19] Woolley G A. Designing chimeric LOV photoswitches[J]. Chemistry & Biology, 19, 441-442(2012).

    [20] Zoltowski B D, Vaccaro B, Crane B R. Mechanism-based tuning of a LOV domain photoreceptor[J]. Nature Chemical Biology, 5, 827-834(2009).

    [21] Nash A I, Ko W H, Harper S M et al. A conserved glutamine plays a central role in LOV domain signal transmission and its duration[J]. Biochemistry, 47, 13842-13849(2008).

    [23] Kawano F, Suzuki H, Furuya A et al. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins[J]. Nature Communications, 6, 6256(2015).

    [24] Pudasaini A. El-Arab K K, Zoltowski B D. LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling[J]. Frontiers in Molecular Biosciences, 2, 18(2015).

    [25] Guntas G, Hallett R A, Zimmerman S P et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 112-117(2015).

    [27] Uda Y, Goto Y, Oda S et al. Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 11962-11967(2017).

    [28] Zhang K, Cui B X. Optogenetic control of intracellular signaling pathways[J]. Trends in Biotechnology, 33, 92-100(2015).

    [29] Leopold A V, Chernov K G, Verkhusha V V. Optogenetically controlled protein kinases for regulation of cellular signaling[J]. Chemical Society Reviews, 47, 2454-2484(2018).

    [31] Repina N A, Rosenbloom A, Mukherjee A et al. At light speed: advances in optogenetic systems for regulating cell signaling and behavior[J]. Annual Review of Chemical and Biomolecular Engineering, 8, 13-39(2017).

    [32] Nan D, Xu Y K. Studies of optogenetic control of intracellular signaling pathways[J]. Chinese Journal of Cell Biology, 37, 1560-1565(2015).

    [34] Shin Y, Berry J, Pannucci N et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets[J]. Cell, 168, 159-171(2017).

    [35] Bracha D, Walls M T, Wei M T et al. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds[J]. Cell, 176, 407(2019).

    [36] Shin Y, Chang Y C. Lee D S W, et al. Liquid nuclear condensates mechanically sense and restructure the genome[J]. Cell, 176, 1518(2019).

    [37] Zhao E M, Zhang Y F, Mehl J et al. Optogenetic regulation of engineered cellular metabolism for microbial chemical production[J]. Nature, 555, 683-687(2018).

    [38] Zhao E M, Suek N, Wilson M Z et al. Light-based control of metabolic flux through assembly of synthetic organelles[J]. Nature Chemical Biology, 15, 589-597(2019).

    [39] Tandar S T, Senoo S, Toya Y et al. Optogenetic switch for controlling the central metabolic flux of Escherichia coli[J]. Metabolic Engineering, 55, 68-75(2019).

    [40] Duan L T, Che D, Zhang K et al. Optogenetic control of molecular motors and organelle distributions in cells[J]. Chemistry & Biology, 22, 671-682(2015).

    [41] van Bergeijk P, Adrian M, Hoogenraad C C et al. Optogenetic control of organelle transport and positioning[J]. Nature, 518, 111-114(2015).

    [42] Shao J W, Zhu S C, Yu Y H et al. Synthetic optogenetic devices for biomedical applications[J]. Scientia Sinica(Vitae), 47, 531-543(2017).

    [43] Chen X J, Zuo F T, Yang Y. Light-regulated gene expression systems[J]. Chinese Bulletin of Life Sciences, 31, 343-356(2019).

    [44] Liu H T, Gomez G, Lin S et al. Optogenetic control of transcription in zebrafish[J]. PLoS One, 7, e50738(2012).

    [45] Polstein L R, Gersbach C A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation[J]. Nature Chemical Biology, 11, 198-200(2015).

    [46] Brangwynne C P, Eckmann C R, Courson D S et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science, 324, 1729-1732(2009).

    [51] Harterink M, van Bergeijk P, Allier C et al. Light-controlled intracellular transport in Caenorhabditis elegans[J]. Current Biology, 26, R153-R154(2016).

    [52] Chen S, Weitemier A Z, Zeng X et al. Near-infrared deep brain stimulation via upconversion nanoparticle: mediated optogenetics[J]. Science, 359, 679-684(2018).

    Tools

    Get Citation

    Copy Citation Text

    Huang Peiyuan, Song Yutong, Zhang Ning, Zhao Zhihao, Duan Liting. Optogenetics Based on Light-Gated Protein-Protein Interactions and Its Applications[J]. Chinese Journal of Lasers, 2020, 47(2): 207010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Oct. 28, 2019

    Accepted: --

    Published Online: Feb. 21, 2020

    The Author Email: Duan Liting (ltduan@cuhk.edu.hk)

    DOI:10.3788/CJL202047.0207010

    Topics