Microelectronics, Volume. 52, Issue 1, 125(2022)

Study on RF Performance of SiC/GaN IMPATT Diode

DAI Yang1, YE Qingsong1, DANG Jiangtao1, LU Zhaoyang1, ZHANG Weiwei2, LEI Xiaoyi1, ZHANG Yunyao1, LIAO Chenguang1, ZHAO Shenglei3, and ZHAO Wu1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(23)

    [1] [1] BANERJEE M S. THz solid-state source based on IMPATT devices [Z]. Oxford, United Kingdom: Terahertz Biomedical and Healthcare Technologies, 2020: 1-41.

    [2] [2] MUKHERJEE M, MAZUMDER N, ROY S K, et al. GaN IMPATT diode: a photo-sensitive high power terahertz source [J]. Semicond Sci Tech, 2007, 22(12): 1258-1267.

    [3] [3] CHEN K J, HBERLEN O, LIDOW A, et al. GaN-on-Si power technology: devices and applications [J]. IEEE Trans Elec Dev, 2017, 64(3): 779-795.

    [4] [4] MILLAN J, GODIGNON P, PERPINA X, et al. A survey of wide bandgap power semiconductor devices [J]. IEEE Trans Power Elec, 2014, 29(5):2155-2163.

    [5] [5] BANERJEE S, MITRA M. Heterojunction DDR THz IMPATT diodes based on AlxGa1-xN/GaN material system [J]. J Semicond, 2015, 36(6): 064002.

    [6] [6] MUKHERJEE M, MAZUMDER N, ROY S K. Prospects of 4H-SiC double drift region IMPATT device as a photo-sensitive high-power source at 0.7 terahertz frequency regime [J]. ACT Passiv Elec, 2014(6): 1-9.

    [7] [7] ZHENG J D, WEI W S,YE J Z, et al. Simulation on large signal and noise properties of (n)Si/(p)SiC heterostructural IMPATT diodes [J]. Mater Sci Forum, 2019(954): 182-187.

    [8] [8] HUISH P W. A comparison between 20:1 and 5:1 doping ratios for high efficiency X-band GaAs IMPATT diodes [C] // IEEE 7th Europ Microw Conf. Copenhagen, Denmark. 1977: 5-8.

    [9] [9] READW T. A proposed high-frequency, negative-resistance diode [J]. Bell Labs Tech J, 2013, 37(2):401-446.

    [10] [10] KE W C, LEE S J, CHEN S L, et al. Effects of growth conditions on the acceptor activation of Mg-doped p-GaN [J]. Mater Chem Phys, 2012, 133(2-3): 1029-1033.

    [11] [11] DAI Y, YANG L, XU S, et al. Anisotropy effects on the performance of wurtzite GaN impact-ionization- avalanche-transit-time diodes [J]. Appl Phys Expr, 2016, 9(11): 111004-1-111004-4.

    [12] [12] BANERJEE S, MUKHERJEE M, BANERJEE J P. Studies on the performance of Wz-GaN DDR IMPATT diode at optimum bias current for THz frequencies [C] // 3rd Conf Micro/Nano Dev, Struct & Syst. Rasipuram, India. 2010: 157-162.

    [13] [13] MOSCATELLI F, SCORZONI A, POGGI A, et al.Al/Ti ohmic contacts to p-type ion-implanted 6H-SiC: mono- and two- dimensional analysis of TLM data [C] // Trans Tech Publications. Linkoping, Switzerland. 2003(433-436): 673-676.

    [14] [14] MAJEWSKI J A, DELE S T M, VOGL P. Stability and band offsets of SiC/GaN, SiC/AlN and AlN/GaN heterostructures [J]. MRS Proceed, 1996, 449: 917.

    [15] [15] RIZZI A, LANTIER R, LUTH H. Boundary conditions and the macroscopic field at SiC/AlN and SiC/GaN heterostructures [J]. Phys Status Solidi A, 2000, 177(1): 165-171.

    [16] [16] KUNIHIRO K, KASAHAR A, TAKAHASHI Y, et al. Experimental evaluation of impact ionization coefficients in GaN [J]. IEEE Elec Dev Lett, 1999, 20(12): 608-610.

    [17] [17] LADES M, WACHUTKA G. Extended anisotropic mobility model applied to 4H/6H-SiC devices[C] // Int Conf Simulat Semicond Process & Dev. Nuremberg, Germany. 1997: 169-171.

    [18] [18] KAMAKURA Y, FUJITA R,KONAGA K, et al. Full and Monte Carlo simulation of impact ionization in wide bandgap semiconductors based on AB initio calculation [C] // Int Conf Simulation Semicond Process Dev (SISPAD). Nuremberg, Germany. 2016: 6-8.

    [19] [19] HURKX G, KLAASSEN D. A new recombination model for device simulation including tunneling [J]. IEEE Trans Elec Dev, 1992, 39(2): 331-338.

    [20] [20] HURKX G, GRAAFF H C, KLOOSTERMAN W J, et al. A novel compact model description of reverse-biased diode characteristics including tunnelling [C] //20th IEEE Europ Sol Sta Dev Res Conf. Nottingham, UK. 1990: 10-13.

    [21] [21] FARAHMAND M, GARETTO C, BELLOTTI E, et al. Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries [J]. IEEE Trans Elec Dev, 2001, 48(3): 535-542.

    [22] [22] DAI Y, YANG L A, CHEN Q, et al. Enhancement of the performance of GaN IMPATT diodes by negative differential mobility [J]. AIP Advan, 2016, 6(5): 055301-1-11.

    [23] [23] MISAWA T. Saturation current and large-signal operation of a read diode [J].Sol Sta Elec, 1970, 13(10): 1363-1368.

    Tools

    Get Citation

    Copy Citation Text

    DAI Yang, YE Qingsong, DANG Jiangtao, LU Zhaoyang, ZHANG Weiwei, LEI Xiaoyi, ZHANG Yunyao, LIAO Chenguang, ZHAO Shenglei, ZHAO Wu. Study on RF Performance of SiC/GaN IMPATT Diode[J]. Microelectronics, 2022, 52(1): 125

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 25, 2021

    Accepted: --

    Published Online: Jun. 14, 2022

    The Author Email:

    DOI:10.13911/j.cnki.1004-3365.210238

    Topics