Chinese Optics, Volume. 15, Issue 2, 161(2022)

Advances in research and applications of optical aspheric surface metrology

Zi-jian LIANG, Yong-ying YANG*, Hong-yang ZHAO, and Sheng-an LIU
Author Affiliations
  • State Key Lab of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
  • show less
    References(124)

    [1] [1] PAN J H. The Design, Manufacture Test of the Aspherical Optical Surfaces[M]. Suzhou: Soochow University Press, 2004. (in Chinese)

    [2] [2] SHU CH L. Modern optics manufacturing technology[M]. Beijing: National Defense Industry Press, 2008. (in Chinese)

    [3] [3] BN M, WOLF E. Principles of Optics[M]. Cambridge: Cambridge University Press, 2019.

    [4] JU G, MA H C, GU ZH Y, et al. Experimental study on the extension of nodal aberration theory to pupil-offset off-axis three-mirror anastigmatic telescopes[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 5, 029001(2019).

    [5] LI CH J, SUN CH F, XI ZH, . Application of optical aspheric element[J]. Laser & Infrared, 43, 244-247(2013).

    [6] [6] LI SH P, ZHANG Y. Application of single point diamond turning in infrared optics[C]. Proceedings of the 2016 International Symposium on Advances in Electrical, Electronics Computer Engineering, ISAEECE, 2016: 1219.

    [7] LUO CH, SHI F, TIAN Y, et al. A combination process of magnetorheological finishing and computer controlled optical surfacing on single-crystal silicon surface[J]. Proceedings of SPIE, 10838, 108380A(2019).

    [8] KARABYN V, POLÁK J, PROCHÁSKA F, et al. Ion beam figuring with using einzel lens[J]. Proceedings of SPIE, 11385, 1138508(2019).

    [9] LIAO W L, DAI Y F, NIE X Q, et al. Rapid fabrication technique for nanometer-precision aspherical surfaces[J]. Applied Optics, 54, 1629-1638(2015).

    [10] BURGE J H. Certification of null correctors for primary mirrors[J]. Proceedings of SPIE, 1994, 248-259(1994).

    [11] ZHU R H, SUN Y, SHEN H. Progress and prospect of optical freeform surface measurement[J]. Acta Optica Sinica, 41, 0112001(2021).

    [12] SHI T, YANG Y Y, ZHANG L, . Surface testing methods of aspheric optical elements[J]. Chinese Optics, 7, 26-46(2014).

    [13] HOU X, ZHANG SH, HU X CH, . The research progress of surface interferometric measurement with higher accuracy[J]. Opto-Electronic Engineering, 47, 200209(2020).

    [14] ZHANG L, LIU D, SHI T, . Optical free-form surfaces testing technologies[J]. Chinese Optics, 10, 283-299(2017).

    [15] ADACHI M, MIKI H, NAKAI Y, et al. Optical precision profilometer using the differential method[J]. Optics Letters, 12, 792-794(1987).

    [16] FANG X ZH, FENG X G, ZHANG J Y. Development of a virtual model of five-axis coordinate measuring machine[J]. Proceedings of SPIE, 11343, 1134307(2019).

    [17] LI A, WANG Y G, WU ZH Q, . Data processing of high-order aspheric surface measurements using CMM in optical fabrication[J]. Chinese Optics, 13, 302-312(2020).

    [18] SHACK R V, PLATT B C. Production and use of a lenticular hartmann screen[J]. Journal of the Optical Society of America, 61, 656-661(1971).

    [19] ZHANG J P, ZHANG X J, ZHANG ZH Y, . Test of rotationally symmetric aspheric surface using Shack-Hartmann wavefront sensor[J]. Optics and Precision Engineering, 20, 492-498(2012).

    [20] FURUKAWA Y, TAKAIE Y, MAEDA Y, et al. Development of one-shot aspheric measurement system with a Shack Hartmann sensor[J]. Applied Optics, 55, 8138-8144(2016).

    [21] HÄUSLER G, FABER C, OLESCH E, et al. Deflectometry vs. interferometry[J]. Proceedings of SPIE, 8788, 87881C(2013).

    [22] LIU D, YAN T L, WANG D D, . Review of fringe-projection profilometry and phase measuring deflectometry[J]. Infrared and Laser Engineering, 46, 0917001(2017).

    [23] DENG X T, GAO N, ZHANG Z H. A calibration method for system parameters in direct phase measuring deflectometry[J]. Applied Sciences, 9, 1444(2019).

    [24] GUO CH F, SU X Y, CHEN W J, . A new null ronchi test for aspheric surfaces[J]. Acta Optica Sinica, 32, 0812002(2012).

    [25] LEI B P, WU F, CHEN Q. Measurement of large-aperture aspheric surfaces with Ronchi grating test method[J]. Opto-Electronic Engineering, 34, 140-144(2007).

    [26] WANG X P, ZHU R H, WANG L, . Digitized foucault tester for quantitative evaluation the surface of aspheric optical elements[J]. Acta Optica Sinica, 31, 0112008(2011).

    [27] CHEN X, LIU W Q, KANG Y S, . Design and tolerance analysis of Offner compensator[J]. Optics and Precision Engineering, 18, 88-93(2010).

    [28] OFFNER A. A null corrector for paraboloidal mirrors[J]. Applied Optics, 2, 153-155(1963).

    [29] BURGE J H, KOT L B, MARTIN H M, et al. Design and analysis for interferometric measurements of the GMT primary mirror segments[J]. Proceedings of SPIE, 6273, 62730M(2006).

    [30] COYLE L E, DUBIN M B, BURGE J H. Design and analysis of an alignment procedure using computer-generated holograms[J]. Optical Engineering, 52, 084104(2013).

    [31] XI Q K, ZHU R H, CHEN L, . Methods on testing an aspheric with a computer generated hologram[J]. Laser Journal, 25, 67-69(2004).

    [32] HE Y W, HUANG L, HOU X, et al. Modeling near-null testing method of a freeform surface with a deformable mirror compensator[J]. Applied Optics, 56, 9132-9138(2017).

    [33] ZHANG L, ZHOU SH, LI D, et al. Model-based adaptive non-null interferometry for freeform surface metrology[J]. Chinese Optics Letters, 16, 081203(2018).

    [34] ZHANG L, ZHOU SH, LI J S, et al. Model calibration by multi-null constraint for an optical freeform surface adaptive interferometer[J]. Applied Optics, 59, 726-734(2020).

    [35] ZHANG L, LI C, HUANG X L, et al. Compact adaptive interferometer for unknown freeform surfaces with large departure[J]. Optics Express, 28, 1897-1913(2020).

    [36] XUE SH, CHEN SH Y, FAN ZH B, et al. Adaptive wavefront interferometry for unknown free-form surfaces[J]. Optics Express, 26, 21910-21928(2018).

    [37] ZHANG L, LI D, LIU Y, et al. Flexible interferometry for optical aspheric and free form surfaces[J]. Optical Review, 24, 677-685(2017).

    [38] HUANG L, CHOI H, ZHAO W CH, et al. Adaptive interferometric null testing for unknown freeform optics metrology[J]. Optics Letters, 41, 5539-5542(2016).

    [39] GRAVES L R, CHOI H, ZHAO W CH, et al. Model-free deflectometry for freeform optics measurement using an iterative reconstruction technique[J]. Optics Letters, 43, 2110-2113(2018).

    [40] CHAUDHURI R, PAPA J, ROLLAND J P. System design of a single-shot reconfigurable null test using a spatial light modulator for freeform metrology[J]. Optics Letters, 44, 2000-2003(2019).

    [41] CHEN SH Y, LU J F, XUE SH. Variable aberration compensation techniques in wavefront interferometry[J]. Laser & Optoelectronics Progress, 54, 51-62(2017).

    [42] MA X, LIU SH J, ZHANG ZH G, . Impact of spatial light modulator pixel pitch on the accuracy of aspheric testing[J]. Chinese Journal of Lasers, 44, 0104002(2017).

    [43] HAO Q, NING Y, HU Y, et al. Simultaneous phase-shifting interferometer with a monitored spatial light modulator flexible reference mirror[J]. Applied Optics, 60, 1550-1557(2021).

    [44] HAO Q, NING Y, HU Y. Applications of wavefront modulation devices in aspheric and freeform measurement[J]. Proceedings of SPIE, 11053, 110530N(2018).

    [45] [45] SHI T. General interferometric aspheric testing with partial null lens[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)

    [46] ZHANG L, TIAN CH, LIU D, et al. Non-null annular subaperture stitching interferometry for steep aspheric measurement[J]. Applied Optics, 53, 5755-5762(2014).

    [47] WEN Y F, CHENG H B, TAM H Y, et al. Modified stitching algorithm for annular subaperture stitching interferometry for aspheric surfaces[J]. Applied Optics, 52, 5686-5694(2013).

    [48] ZHANG L, TIAN CH, LIU D, . Non-null annular subaperture stitching interferometry for aspheric test[J]. Acta Optica Sinica, 34, 0812003(2014).

    [49] YAN L S, WANG X K, ZHENG L G, et al. Experimental study on subaperture testing with iterative triangulation algorithm[J]. Optics Express, 21, 22628-22644(2013).

    [50] YAN G J, ZHANG X ZH. Research on non-null convex aspherical sub-aperture stitching detection technology[J]. Chinese Optics, 11, 798-803(2018).

    [51] CHEN SH Y, DAI Y F, LI SH Y, et al. Calculation of subaperture aspheric departure in lattice design for subaperture stitching interferometry[J]. Optical Engineering, 49, 023601(2010).

    [52] ZHANG L, LIU D, SHI T, et al. Aspheric subaperture stitching based on system modeling[J]. Optics Express, 23, 19176-19188(2015).

    [53] GARBUSI E, PRUSS C, LIESENER J, et al. New technique for flexible and rapid measurement of precision aspheres[J]. Proceedings of SPIE, 6616, 61629(2007).

    [54] BAER G, SCHINDLER J, PRUSS C, et al. Fast and flexible non-null testing of aspheres and free-form surfaces with the tilted-wave-interferometer[J]. International Journal of Optomechatronics, 8, 242-250(2014).

    [55] [55] LIU L. Comprehensive analysis of radial shear interference errs[D]. Xi''an: Xi''an Technological University, 2019. (in Chinese)

    [56] WANG M, ZHANG B, NIE S P, et al. Radial shearing interferometer for aspheric surface testing[J]. Proceedings of SPIE, 4927, 673-676(2002).

    [57] ZHANG R, YANG Y Y, ZHAO H Y, et al. Non-Null testing of the aspheric surface using a quadriwave lateral shearing interferometer[J]. Applied Optics, 59, 5447-5456(2020).

    [58] [58] YANG Y Y, LING T. Novel CommonPath Interferometers[M]. Hangzhou: Zhejiang Universisty Press, 2020. (in Chinese)

    [59] HE J, CHEN L. Measurement of aspheric surfaces by infrared interferometer[J]. Optics and Precision Engineering, 18, 69-74(2010).

    [60] [60] YANG Y Y. Advanced Interferometry Application[M]. Hangzhou: Zhejiang University Press, 2017. (in Chinese)

    [61] TAO W, VALERA J D, MOORE A J. High-speed, sub-Nyquist interferometry[J]. Optics Express, 19, 10111-10123(2011).

    [62] LIU D, YANG Y Y, TIAN CH, . Analysis and correction of retrace error for nonnull aspheric testing[J]. Acta Optica Sinica, 29, 688-696(2009).

    [63] [63] TaylHobson, Inc. Taylsurf profiler[EBOL]. [20210831]. https:www.taylhobson.comproductssurfaceprofilersopticspgipgifreefm.

    [64] [64] ZEISS, Inc. XENOS[EBOL]. [20210831]. https:www.zeiss.commetrologyproductssystemscodinatemeasuringmachinesbridgetypecmmsxenos.html.

    [65] [65] MALACARA D. Optical Shop Testing[M]. 3rd ed. Hoboken: Wiley, 2007.

    [66] NEAL D R, ARMSTRONG D J, TURNER W T. Wavefront sensors for control and processing monitoring in optics manufacture[J]. Proceedings of SPIE, 2933, 211-220(1997).

    [67] RAO X J, LING N, WANG CH, . Application of hartmann-shack sensor in aspheric process[J]. Acta Optica Sinica, 22, 491-494(2002).

    [68] GUO W J, ZHAO L P, TONG C S, et al. Adaptive centroid-finding algorithm for freeform surface measurements[J]. Applied Optics, 52, D75-D83(2013).

    [69] KNAUER M C, KAMINSKI J, HAUSLER G. Phase measuring deflectometry: a new approach to measure specular free-form surfaces[J]. Proceedings of SPIE, 5457, 366-376(2004).

    [70] TANG Y, SU X Y, LIU Y K, et al. 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry[J]. Optics Express, 16, 15090-15096(2008).

    [71] SU P, KHREISHI M, SU T Q, et al. Aspheric and freeform surfaces metrology with software configurable optical test system: a computerized reverse Hartmann test[J]. Optical Engineering, 53, 031305(2014).

    [72] SU P, PARKS R E, WANG L R, et al. Software configurable optical test system: a computerized reverse Hartmann test[J]. Applied Optics, 49, 4404-4412(2010).

    [73] [73] YUAN T. Study on fringereflection optical surface shape measurement technology f large aspheric mirr[D]. Changchun: Changchun Institute of Optics, Fine Mehcanics Physics, Chinese Academy of Sciences, 2016. (in Chinese)

    [74] CORNEJO-RODRIGUEZ A, CORDERO-DAVILA A, CARDONA-NUNEZ O. Ronchi and Hartman tests: a null Hartman test[J]. Proceedings of SPIE, 1319, 650(1990).

    [75] BROWN B R, LOHMANN A W. Complex spatial filtering with binary masks[J]. Applied Optics, 5, 967-969(1966).

    [76] MACGOVERN A J, WYANT J C. Computer generated holograms for testing optical elements[J]. Applied Optics, 10, 619-624(1971).

    [77] ONO A, WYANT J C. Aspherical mirror testing using a CGH with small errors[J]. Applied Optics, 24, 560-563(1985).

    [78] ONO A, WYANT J C. Plotting errors measurement of CGH using an improved interferometric method[J]. Applied Optics, 23, 3905-3910(1984).

    [79] WYANT J C, O'NEILL P K. Computer generated hologram; null lens test of aspheric wavefronts[J]. Applied Optics, 13, 2762-2765(1974).

    [80] TAMURA H, ISHII Y. Computer-generated hologram fabricated by electron-beam lithography for noise reduction[J]. Optical Review, 19, 50-57(2012).

    [81] BURGE J H, ANDERSON D S. Full-aperture interferometric test of convex secondary mirrors using holographic test plates[J]. Proceedings of SPIE, 2199, 181-192(1994).

    [82] ZHOU P, SHU Y, ZHAO CH Y, et al. Diffraction effects for interferometric measurements due to imaging aberrations[J]. Optics Express, 20, 4403-4418(2012).

    [83] CAI W R, ZHOU P, ZHAO CH Y, et al. Diffractive optics calibrator: measurement of etching variations for binary computer-generated holograms[J]. Applied Optics, 53, 2477-2486(2014).

    [84] CAI W R, ZHOU P, ZHAO CH Y, et al. Analysis of wavefront errors introduced by encoding computer-generated holograms[J]. Applied Optics, 52, 8324-8331(2013).

    [85] ZEHNDER R, BURGE J H, ZHAO CH Y. Use of computer generated holograms for alignment of complex null correctors[J]. Proceedings of SPIE, 6273, 62732S(2006).

    [86] DUBIN M B, SU P, BURGE J H. Fizeau interferometer with spherical reference and CGH correction for measuring large convex aspheres[J]. Proceedings of SPIE, 7426, 74260S(2009).

    [87] REICHELT S, PRUSS C, TIZIANI H J. Absolute interferometric test of aspheres by use of twin computer-generated holograms[J]. Applied Optics, 42, 4468-4479(2003).

    [88] BEYERLEIN M, LINDLEIN N, SCHWIDER J. Dual-wave-front computer-generated holograms for quasi-absolute testing of aspherics[J]. Applied Optics, 41, 2440-2447(2002).

    [89] [89] WANG CH J. Research on dual CGH using f absolute test of aspherics[D]. Nanjing: Nanjing University of Science Technology, 2008. (in Chinese)

    [90] [90] FENG J. Highly accuracy aspheric surface testing based on computergenerated hologram[D]. Chengdu: Institute of Optics Electronics, Chinese Academy of Sciences, 2014. (in Chinese)

    [91] POLESHCHUK A G, NASYROV R K, ASFOUR J M. Combined computer-generated hologram for testing steep aspheric surfaces[J]. Optics Express, 17, 5420-5425(2009).

    [92] [92] LI M. Research on key technology of hybrid null testing of aspheric mirr offaxis optical system alignment based on CGH[D]. Changchun: Changchun Institute of Optics, Fine Mehcanics Physics, Chinese Academy of Sciences, 2015. (in Chinese)

    [93] [93] GAO S T. Research on ultraprecise aspheric surface testing[D]. Changchun: Changchun Institute of Optics, Fine Mehcanics Physics, Chinese Academy of Sciences, 2014. (in Chinese)

    [94] CAO ZH L, XUAN L, HU L F, et al. Investigation of optical testing with a phase-only liquid crystal spatial light modulator[J]. Optics Express, 13, 1059-1065(2005).

    [95] PRUSS C, TIZIANI H J. Dynamic null lens for aspheric testing using a membrane mirror[J]. Optics Communications, 233, 15-19(2004).

    [96] FUERSCHBACH K, THOMPSON K P, ROLLAND J P. Interferometric measurement of a concave, φ-polynomial, Zernike mirror[J]. Optics Letters, 39, 18-21(2014).

    [97] HÄLLSTIG E, STIGWALL J, MARTIN T, et al. Fringing fields in a liquid crystal spatial light modulator for beam steering[J]. Journal of Modern Optics, 51, 1233-1247(2004).

    [98] SHI T, ZANG ZH M, LIU D, . Retrace error correction for non-null testing of optical aspheric surface[J]. Acta Optica Sinica, 36, 0812006(2016).

    [99] BEAR G, SCHINDLER J, PRUSS C, et al. Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces[J]. Optics Express, 22, 31200-31211(2014).

    [100] SHI T, LIU D, ZHOU Y, H et al. Practical retrace error correction in non-null aspheric testing: a comparison[J]. Optics Communications, 383, 378-385(2017).

    [101] [101] REN W T. Surface shape detection of offaxis aspheric surface based on reverse iteration method[D]. Chengdu: University of Electronic Science Technology of China, 2020. (in Chinese)

    [102] LIU H L, ZHU Q D, HAO Q, et al. Design of novel part-compensating lens used in aspheric testing[J]. Proceedings of SPIE, 5253, 480-484(2003).

    [103] SULLIVAN J J, GREIVENKAMP J E. Design of partial nulls for testing of fast aspheric surfaces[J]. Proceedings of SPIE, 6671, 66710W(2007).

    [104] LIU D, YANG Y Y, TIAN CH, . Partial null lens for general aspheric testing[J]. Infrared and Laser Engineering, 38, 322-325(2009).

    [105] ZANG ZH M, XU ZH R, PENG SH J, et al. Non-null interferometers for irregular surface measurement with system modeling[J]. Measurement Science and Technology, 32, 045205(2021).

    [106] XUE SH, CHEN SH Y, TIE G P. Near-null interferometry using an aspheric null lens generating a broad range of variable spherical aberration for flexible test of aspheres[J]. Optics Express, 26, 31172-31189(2018).

    [107] DOU Y M, YUAN Q, GAO ZH SH, et al. Partial null astigmatism-compensated interferometry for a concave freeform Zernike mirror[J]. Journal of Optics, 20, 065702(2018).

    [108] LIU Y M, LAWRENCE G N, KOLIOPOULOS C L. Subaperture testing of aspheres with annular zones[J]. Applied Optics, 27, 4504-4513(1988).

    [109] HOU X, WU F, YANG L, et al. Experimental study on measurement of aspheric surface shape with complementary annular subaperture interferometric method[J]. Optics Express, 15, 12890-12899(2007).

    [110] [110] YAN L S. Research on the algithm testing optical mirr by subaperture stitching interferometry[D]. Changchun: Changchun Institute of Optics, Fine Mehcanics Physics, Chinese Academy of Sciences, 2015. (in Chinese)

    [111] [111] ZYGO, Inc. Verifire[EBOL]. [20210831]. https:www.zygo.com.cnproductsmetrologysystemslaserinterferometersverifire.

    [112] KIN C J, WYANT J C. Subaperture test of a large flat or a fast aspheric surface[J]. Journal of the Optical Society of America, 71, 1587(1981).

    [113] CHEN SH Y, WU CH CH, TIE G P, et al. Stitching test of large flats by using two orthogonally arranged wavefront interferometers[J]. Applied Optics, 56, 9193-9198(2017).

    [114] GARBUSI E, PRUSS C, OSTEN W. Interferometer for precise and flexible asphere testing[J]. Optics Letters, 33, 2973-2975(2008).

    [115] SCHINDLER J, PRUSS C, OSTEN W. Simultaneous removal of nonrotationally symmetric errors in tilted wave interferometry[J]. Optical Engineering, 58, 074105(2019).

    [116] MIKŠ A, NOVAK J. Noncontact interferometric optical probe for calibration of coordinate measuring machines[J]. Applied Optics, 50, 671-678(2011).

    [117] SU P, WANG Y H, OH C J, et al. Swing arm optical CMM: self calibration with dual probe shear test[J]. Proceedings of SPIE, 8126, 81260W(2011).

    [118] WANG Y H, SU P, PARKS R E, et al. Swing arm optical coordinate-measuring machine: high precision measuring ground aspheric surfaces using a laser triangulation probe[J]. Optical Engineering, 51, 073603(2012).

    [119] SU P, OH C J, ZHAO CH Y, et al. Optical testing for meter size aspheric optics[J]. Proceedings of SPIE, 8466, 84660S(2012).

    [120] SU P, PARKS R E, WANG Y H, et al. Swing-arm optical coordinate measuring machine: modal estimation of systematic errors from dual probe shear measurements[J]. Optical Engineering, 51, 043604(2012).

    [121] [121] LING T. Reconstruction of threedimensional refractive index field based on multiwave shearing interferometry optical tomography[D] Hangzhou: Zhejiang University, 2016. (in Chinese)

    [122] [122] ZHANG R. Research on key parameters application of wavefront metrology based on the romly encoded hybrid grating lateral shearing interferometry[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)

    [123] [123] SHAO F. Research on testing equipment of cneal topography[D]. Nanjing: Nanjing University of Science Technology, 2008. (in Chinese)

    [124] GREIVENKAMP J E. Sub-Nyquist interferometry[J]. Applied Optics, 26, 5245-5258(1987).

    CLP Journals

    [1] Xu ZHANG, Shi-jie LI, Bing-cai LIU, Ai-ling TIAN, Hai-feng LIANG, Chang-long CAI. A non-null interferometry for concave aspheric surface[J]. Chinese Optics, 2024, 17(1): 140

    [2] Yu-wen ZHANG, Bing-cai LIU, Hong-jun WANG, Ai-ling TIAN, Ke-xin REN, Kai WANG. Error modeling of polarization devices in simultaneous phase-shifted lateral shearing interferometry[J]. Chinese Optics, 2024, 17(3): 640

    [3] Jia-qi ZHANG, Yi-bo GUO, You-jian ZHANG, Zhi-hua ZHANG. Design of reflector assembly and adhesive layer under airborne wide temperature conditions[J]. Chinese Optics, 2023, 16(3): 578

    [4] He-yang BU, Lin-yao YU, Hao-nan TIAN, Jian WANG. Narcissus suppression of medium-wave infrared imaging system[J]. Chinese Optics, 2023, 16(6): 1414

    [5] Hao-bo CHEN, Li-wei ZHANG, Wen-qing SUN, Bao-hua CHEN, Zhao-liang CAO, Quan-ying WU. White light interferometry micro measurement algorithm based on principal component analysis[J]. Chinese Optics, 2023, 16(3): 637

    [6] Shen WANG, Quan LIU, Cheng-li GUO, Li-song YAN. CGH null compensation testing of high-order coaxial aspherical surfaces[J]. Chinese Optics, 2025, 18(2): 237

    [7] Jian-jun CHEN, Lin-lin WANG, Li-min HUO, Cui-fang KUANG, Lei MAO, Chi ZHENG, Lu YIN. Effects of sinusoidal mid-spatial frequency surface errors on optical transfer function[J]. Chinese Optics, 2024, 17(4): 725

    [8] Xiu-dong WEI, Bai-lin LI, Yu-hang ZHAO, Jian-fang TANG, Ji ZHANG, Yong-huan HUANG, Ying-chao XU. Design of focusing solar simulator based on free-form surface[J]. Chinese Optics, 2023, 16(6): 1356

    Tools

    Get Citation

    Copy Citation Text

    Zi-jian LIANG, Yong-ying YANG, Hong-yang ZHAO, Sheng-an LIU. Advances in research and applications of optical aspheric surface metrology[J]. Chinese Optics, 2022, 15(2): 161

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 26, 2021

    Accepted: --

    Published Online: Mar. 28, 2022

    The Author Email:

    DOI:10.37188/CO.2021-0143

    Topics