Acta Optica Sinica, Volume. 43, Issue 20, 2014002(2023)

Effect of In Mole Fraction in Upper Waveguide Layer on Performance of InGaN-Based Blue Lasers

Xingrui Fu and Shuping Li*
Author Affiliations
  • College of Physical Science and Technology, Xiamen University, Xiamen 361005, Fujian , China
  • show less
    References(27)

    [1] Ning Y Q, Chen Y Y, Zhang J et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 41, 0114001(2021).

    [2] Britten S W, Schmid L, Molitor T et al. Blue high-power laser sources for processing solutions in e-mobility and beyond[J]. Procedia CIRP, 94, 592-595(2020).

    [3] Qiu P J, Cui G G, Qian Z Y et al. 4.0 Gbps visible light communication in a foggy environment based on a blue laser diode[J]. Optics Express, 29, 14163-14173(2021).

    [4] Sun L Y, Niu M S, Chen J X et al. Nitrogen dioxide detection based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 49, 2310002(2022).

    [5] Mehta K, Liu Y S, Wang J L et al. Theory and design of electron blocking layers for III-N-based laser diodes by numerical simulation[J]. IEEE Journal of Quantum Electronics, 54, 2001310(2018).

    [6] Sun T Y, Xia M J, Qiao L. Failure mechanism and detection analysis of semiconductor laser[J]. Laser & Optoelectronics Progress, 58, 1900003(2021).

    [7] Park S H, Kim H M, Ahn D. Optical gain in GaN quantum well lasers with quaternary AlInGaN barriers[J]. Japanese Journal of Applied Physics, 44, 7460-7463(2005).

    [8] Liu J X, Qie H R, Sun Q A et al. Enhanced carrier confinement and radiative recombination in GaN-based lasers by tailoring first-barrier doping[J]. Optics Express, 28, 32124-32131(2020).

    [9] Liang F, Zhao D G, Liu Z S et al. Improved performance of GaN-based blue laser diodes using asymmetric multiple quantum wells without the first quantum barrier layer[J]. Optics Express, 30, 9913-9923(2022).

    [10] Yang J, Zhao D G, Jiang D S et al. Enhancing the performance of GaN based LDs by using low in content InGaN instead of GaN as lower waveguide layer[J]. Optics & Laser Technology, 111, 810-813(2019).

    [11] Liang F, Zhao D G, Jiang D S et al. Improvement of slope efficiency of GaN-Based blue laser diodes by using asymmetric MQW and InxGa1-xN lower waveguide[J]. Journal of Alloys and Compounds, 731, 243-247(2018).

    [12] Onwukaeme C, Ryu H Y. Investigation of the optimum Mg doping concentration in p-type-doped layers of InGaN blue laser diode structures[J]. Crystals, 11, 1335(2021).

    [13] Xing Y, Zhao D G, Jiang D S et al. Suppression of electron and hole overflow in GaN-based near-ultraviolet laser diodes[J]. Chinese Physics B, 27, 028101(2018).

    [14] He L F, Zhang K, Wu H L et al. Efficient carrier transport for 368 nm ultraviolet LEDs with a p-AlInGaN/AlGaN short-period superlattice electron blocking layer[J]. Journal of Materials Chemistry C, 9, 7893-7899(2021).

    [15] Du X J, Liu J, Dong H L et al. Effect of Al composition of electron blocking layer on photoelectric performance of GaN-based blue laser diode[J]. Chinese Journal of Luminescence, 43, 773-785(2022).

    [16] Hu L, Zhang L Q, Liu J P et al. High power GaN-based blue lasers[J]. Chinese Journal of Lasers, 47, 0701025(2020).

    [17] Zhong Z B, Lu S Q, Li J C et al. Design and fabrication of high power InGaN blue laser diode over 8 W[J]. Optics & Laser Technology, 139, 106985(2021).

    [18] Brendel M, Kruse A, Jönen H et al. Auger recombination in GaInN/GaN quantum well laser structures[J]. Applied Physics Letters, 99, 031106(2011).

    [19] Cai X F, Li S P, Kang J Y. Improved characteristics of ultraviolet AlGaN multiple-quantum-well laser diodes with step-graded quantum barriers close to waveguide layers[J]. Superlattices and Microstructures, 97, 1-7(2016).

    [20] Sun P, Dang S H, Li T B et al. Carrier transport improvement in blue InGaN light-emitting diodes via reduced polarization using a band-engineered electron blocking layer[J]. Journal of Display Technology, 10, 1101-1105(2014).

    [21] Chen C Y, Hsieh C, Liao C H et al. Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode[J]. Optics Express, 20, 11321-11335(2012).

    [22] Li X, Zhao D G, Jiang D S et al. The effectiveness of electron blocking layer in InGaN-based laser diodes with different indium content[J]. Physica Status Solidi (a), 213, 2223-2228(2016).

    [23] Kuo Y K, Chang J Y, Chen F M et al. Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes[J]. IEEE Journal of Quantum Electronics, 52, 3300105(2016).

    [24] Kozaki T, Matsumura H, Sugimoto Y et al. High-power and wide wavelength range GaN-based laser diodes[J]. Proceedings of SPIE, 6133, 613306(2006).

    [25] Morkoç H[M]. Handbook of nitride semiconductors and devices: GaN‐based optical and electronic devices(2008).

    [26] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of Applied Physics, 89, 5815-5875(2001).

    [27] Gaikwad S A, Samuel E P, Patil D S et al. Theoretical analysis of effect of temperature on threshold parameters and field intensity in GaN material based heterostructure[J]. Bulletin of Materials Science, 30, 255-261(2007).

    Tools

    Get Citation

    Copy Citation Text

    Xingrui Fu, Shuping Li. Effect of In Mole Fraction in Upper Waveguide Layer on Performance of InGaN-Based Blue Lasers[J]. Acta Optica Sinica, 2023, 43(20): 2014002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Apr. 4, 2023

    Accepted: May. 24, 2023

    Published Online: Oct. 23, 2023

    The Author Email: Li Shuping (lsp@xmu.edu.cn)

    DOI:10.3788/AOS230773

    Topics