Chinese Journal of Lasers, Volume. 50, Issue 8, 0802304(2023)

Experimental Study on Synchronous Nanosecond Laser‑Assisted Electrochemical Processing of Ti‑6Al‑4V Titanium Alloy

Yujie Gui1,2,3, Yufeng Wang1,3、*, Yong Yang1,3, and Wenwu Zhang1,3
Author Affiliations
  • 1Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang , China
  • 2School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, Zhejiang , China
  • 3Zhejiang Provincial Key Laboratory of Aero-Engine Extreme Manufacturing Technology, Ningbo 315201, Zhejiang , China
  • show less
    References(25)

    [1] Zhang G G, Sun Y L, Fan W L et al. Research progress and future development of surface integrity on machined surface of titanium alloys[J]. Aeronautical Manufacturing Technology, 65, 36-55, 79(2022).

    [2] Gu J, Liu Z P, Xu Y J et al. Titanium alloy and its laser processing technology in aviation manufacturing[J]. Applied Laser, 40, 547-555(2020).

    [3] Fan P, Pan J T, Ge Y M et al. Finite element analysis of residual stress in TC4/TC11 titanium alloy gradient material produced by laser additive manufacturing[J]. Chinese Journal of Lasers, 48, 1802012(2021).

    [4] Kadivar M, Azarhoushang B, Daneshi A et al. Surface integrity in micro-grinding of Ti6Al4V considering the specific micro-grinding energy[J]. Procedia CIRP, 87, 181-185(2020).

    [5] Liang X L, Liu Z Q, Yao G H et al. Investigation of surface topography and its deterioration resulting from tool wear evolution when dry turning of titanium alloy Ti-6Al-4V[J]. Tribology International, 135, 130-142(2019).

    [6] Wang P Q, Wang Y Y, Wu M J et al. Effects of heat treatment on microstructure, mechanical properties, and anisotropy of laser melting deposited TC4[J]. Chinese Journal of Lasers, 48, 1002116(2021).

    [7] Liang X L, Liu Z Q, Wang B. Multi-pattern failure modes and wear mechanisms of WC-Co tools in dry turning Ti-6Al-4V[J]. Ceramics International, 46, 24512-24525(2020).

    [8] Ren P, Yang X J, Li X et al. Manufacture technology of afterburner body with grid structure[J]. Aeronautical Manufacturing Technology, 58, 69-72(2015).

    [9] Kumar R, Roy S, Gunjan P et al. Analysis of MRR and surface roughness in machining Ti-6Al-4V ELI titanium alloy using EDM process[J]. Procedia Manufacturing, 20, 358-364(2018).

    [10] Zhang R, Wan Y, Ai X et al. Preparation of micro-nanostructure on titanium implants and its bioactivity[J]. Transactions of Nonferrous Metals Society of China, 26, 1019-1024(2016).

    [11] Zhang T Z, Zhang C, Li J et al. Formation mechanism of recast layer in millisecond laser drilling of Ti6Al4V alloys[J]. Acta Optica Sinica, 37, 0214001(2017).

    [12] Wang M L, Qu N S. Improving material removal rate in macro electrolyte jet machining of TC4 titanium alloy through back-migrating jet channel[J]. Journal of Manufacturing Processes, 71, 489-500(2021).

    [13] Liu Y, Qu N S. Electrochemical milling of TB6 titanium alloy in NaNO3 solution[J]. Journal of the Electrochemical Society, 166, E35-E49(2019).

    [14] Mishra K, Dey D, Sarkar B R et al. Modeling on volumetric material removal for fabrication of complex shapes by EC milling of Ti6Al4V[J]. Journal of the Electrochemical Society, 165, E388-E396(2018).

    [15] Klocke F, Zeis M, Klink A et al. Technological and economical comparison of roughing strategies via milling, sinking-EDM, wire-EDM and ECM for titanium- and nickel-based blisks[J]. CIRP Journal of Manufacturing Science and Technology, 6, 198-203(2013).

    [16] Speidel A, Mitchell-Smith J, Walsh D A et al. Electrolyte jet machining of titanium alloys using novel electrolyte solutions[J]. Procedia CIRP, 42, 367-372(2016).

    [17] Speidel A, Mitchell-Smith J, Bisterov I et al. Oscillatory behaviour in the electrochemical jet processing of titanium[J]. Journal of Materials Processing Technology, 273, 116264(2019).

    [18] Xu Z Y, Chen X Z, Zhou Z S et al. Electrochemical machining of high-temperature titanium alloy Ti60[J]. Procedia CIRP, 42, 125-130(2016).

    [19] Chen X Z, Xu Z Y, Zhu D et al. Experimental research on electrochemical machining of titanium alloy Ti60 for a blisk[J]. Chinese Journal of Aeronautics, 29, 274-282(2016).

    [20] Wang X D, Qu N S, Fang X L. Reducing stray corrosion in jet electrochemical milling by adjusting the jet shape[J]. Journal of Materials Processing Technology, 264, 240-248(2019).

    [21] Wang Y F. Development of laser and electrochemical machining based on internal total reflection[J]. Journal of the Electrochemical Society, 166, E481-E484(2019).

    [22] Wang Y F, Yang F, Zhang W W. Research on laser and electrochemical hybrid machining of small holes based on total reflection of laser beam[J]. Electromachining&Mould, 49-54(2020).

    [23] Yang Z W. Fundamental research on the application of high efficiency ECM for TC4 titanium alloy profiled cavities[D], 46-47(2018).

    [24] Wang Y F, Yang F, Zhang G Y et al. Fabrication of deep and small holes by synchronized laser and shaped tube electrochemical machining (laser-STEM) hybrid process[J]. The International Journal of Advanced Manufacturing Technology, 105, 2721-2731(2019).

    [25] Wang S W, Ding Y, Cheng B et al. Mechanism and research advances of water-jet guided laser micromachining[J]. Chinese Journal of Lasers, 49, 1002404(2022).

    Tools

    Get Citation

    Copy Citation Text

    Yujie Gui, Yufeng Wang, Yong Yang, Wenwu Zhang. Experimental Study on Synchronous Nanosecond Laser‑Assisted Electrochemical Processing of Ti‑6Al‑4V Titanium Alloy[J]. Chinese Journal of Lasers, 2023, 50(8): 0802304

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Aug. 8, 2022

    Accepted: Sep. 19, 2022

    Published Online: Mar. 28, 2023

    The Author Email: Wang Yufeng (wangyufeng@nimte.ac.cn)

    DOI:10.3788/CJL221113

    Topics