Chinese Journal of Lasers, Volume. 49, Issue 14, 1402106(2022)

Mechanism of Vanadium on Microstructure and Properties of Titanium Alloy by Laser Melting Deposition

Yanshuo Liu1, Nuo Xu2, Guojian Xu1、*, Nan Yang1, Chenyang Wang1, and Fei Xing3
Author Affiliations
  • 1School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, Liaoning, China
  • 2Department of Development, Reform and Discipline Construction, Shenyang University of Technology, Shenyang 110870, Liaoning, China
  • 3School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, Liaoning, China
  • show less
    References(25)

    [1] Zhang F, Wang L Q, Zhao S. Research development on forging technology for aviation titanium alloys[J]. Forging & Stamping Technology, 42, 1-7(2017).

    [2] Yuan G S, Yan L P, Han Y Y. Application progress of titanium alloy[J]. Hot Working Technology, 46, 13-16(2017).

    [3] Huo D X, Liang J L, Li H et al. Progress of research and application of titanium alloy[J]. Foundry Technology, 37(2016).

    [4] Huo H, Zhang A F, Qi Z J et al. Low-cycle fatigue performance of boron-modified TC4 deposited by laser melting[J]. Chinese Journal of Lasers, 47, 1202003(2020).

    [5] Nagesha B K, Dhinakaran V, Shree M V et al. A review on weldability of additive manufactured titanium alloys[J]. Materials Today: Proceedings, 33, 2964-2969(2020).

    [6] Hao Y B, Mu T Y, Qian M M et al. Research on forming process, microstructure and properties of laser melting deposited titanium alloy[J]. Applied Laser, 41, 805-813(2021).

    [7] Wang W B, Ma R X, Jing Z C et al. Effect of solution-aging treatment on microstructure and properties of TC4 fabricated bylaser three-dimensional printing[J]. Chinese Journal of Lasers, 46, 1002003(2019).

    [8] Guo J L, Tian Y W. Research and development of 600 ℃ high temperature titanium alloys[J]. Foundry Technology, 41, 894-896(2020).

    [9] Qi Z J, Zhang X X, Wang Y Y et al. Effect of B on microstructure and tensile properties of laser additive manufactured TC4 alloy[J]. Chinese Journal of Lasers, 47, 0602002(2020).

    [10] Opini V C, Campo K N, Mello M G et al. Effect of partial replacement of V with Nb on phase transformations and mechanical properties of Ti-5553 alloy[J]. Materials Letters, 220, 205-208(2018).

    [11] Sadeghpour S, Javaheri V, Abbasi S M et al. The effect of phase stability on the grain growth behavior of beta titanium alloys[J]. Physica B: Condensed Matter, 593, 412315(2020).

    [12] Zou Z Y, Simonelli M, Katrib J et al. Refinement of the grain structure of additive manufactured titanium alloys via epitaxial recrystallization enabled by rapid heat treatment[J]. Scripta Materialia, 180, 66-70(2020).

    [13] Ge L C, Zhao Z S, Liu N X et al. Adjusting of Al additions on microstructures and properties of TC4 alloys fabricated by laser additive manufacturing[J]. Chinese Journal of Lasers, 48, 1402004(2021).

    [14] Azarniya A, Colera X G, Mirzaali M J et al. Additive manufacturing of Ti-6Al-4V parts through laser metal deposition (LMD): process, microstructure, and mechanical properties[J]. Journal of Alloys and Compounds, 804, 163-191(2019).

    [15] Wang X S[D]. The effect of Ta and Nb on microstructure and properties of high temperature titanium alloy(2011).

    [16] Liu Q H, Hui S X, Ye W J et al. Effect of the content of alloying elements on dynamic mechanical properties of TC4 alloy[J]. Rare Metal Materials and Engineering, 42, 1464-1468(2013).

    [17] Wang X L[D]. Structural stability and plastic deformation mechanism of β-type Ti-V system alloys(2015).

    [18] Qin L Y, Wu J B, Wang W et al. Microstructures and fatigue properties of Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V titanium alloy fabricated usinglaser deposition manufacturing[J]. Chinese Journal of Lasers, 47, 1002008(2020).

    [19] Zhen Z[D]. Influence of V element on microstructure and properties of Ti-Zr-V alloy produced by laser additive manufacturing(2019).

    [20] Zhang X K, Lin P H, Huang J C. Lattice distortion effect on incipient behavior of Ti-based multi-principal element alloys[J]. Journal of Materials Research and Technology, 9, 8136-8147(2020).

    [21] Ma R X, Xu G J, Liu Z Q et al. Effect of normalizing temperature on microstructures andtensile properties of laser three-dimensional-printed titanium alloy[J]. Chinese Journal of Lasers, 46, 0702008(2019).

    [22] Kim S, Jung H, Rim H J et al. Fabrication of reinforced α+β titanium alloys by infiltration of Al into porousTi-V compacts[J]. Journal of Alloys and Compounds, 768, 775-781(2018).

    [23] Xu K H, Xue Y, Zhang Z M et al. The effect of heat treatment on α/β phases evolution of TC4 titanium alloy fabricated by spark plasma sintering[J]. Procedia Manufacturing, 50, 713-718(2020).

    [24] Huang S X, Zhao Q Y, Wu C et al. Effects of β-stabilizer elements on microstructure formation and mechanical properties of titanium alloys[J]. Journal of Alloys and Compounds, 876, 160085(2021).

    [25] Sui N, Cao J X, Huang X et al. Effect of composition on microstructure and mechanical properties of TA15 titanium alloy[J]. Journal of Aeronautical Materials, 39, 48-54(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yanshuo Liu, Nuo Xu, Guojian Xu, Nan Yang, Chenyang Wang, Fei Xing. Mechanism of Vanadium on Microstructure and Properties of Titanium Alloy by Laser Melting Deposition[J]. Chinese Journal of Lasers, 2022, 49(14): 1402106

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 6, 2021

    Accepted: Feb. 15, 2022

    Published Online: Jun. 17, 2022

    The Author Email: Xu Guojian (xuguojian@sut.edu.cn)

    DOI:10.3788/CJL202249.1402106

    Topics