Microelectronics, Volume. 54, Issue 1, 17(2024)
Research Progress on Advanced Barrier Layer for Cu Interconnects
[1] [1] LI B, SULLIVAN T D, LEE T C, et al. Reliability challenges for copper interconnects [J]. Microelectronics Reliability, 2004, 44(3): 365-380.
[2] [2] STAMPER A K, FUSELIER M B, TIAN X. Advanced wiring RC delay issues for sub-0.25-micron generation CMOS [C] // Proceedings of the IEEE 1998 International Interconnect Technology Conference. 1998: 62-64.
[3] [3] NITTA T, OHMI T, OTSUKI M, et al. Electrical properties of giant-grain copper thin films formed by a low kinetic energy particle process [J]. Journal of the Electrochemical Society, 2019, 139(3): 922-927.
[4] [4] HU C K, HARPER J M E. Copper interconnections and reliability [J]. Materials Chemistry and Physics, 1998, 52(1): 5-16.
[5] [5] ZHAO B. Dual damascene interconnect of copper and low permittivity dielectric for high performance integrated circuits [J]. Electrochemical and Solid-State Letters, 1999, 1(6): 276-278.
[6] [6] CHANG C A. Outdiffusion of Cu through Au: comparison of (100) and (111) Cu films epitaxially deposited on Si, and effects of annealing ambients [J]. Applied Physics Letters, 1989, 55(26): 2754-2756.
[7] [7] HOLLOWAY K, FRYER P M. Tantalum as a diffusion barrier between copper and silicon [J]. Applied Physics Letters, 1990, 57(17): 1736-1738.
[8] [8] HOLLOWAY K, FRYER P M, CABRAL C, et al. Tantalum as a diffusion barrier between copper and silicon: failure mechanism and effect of nitrogen additions [J]. Journal of Applied Physics, 1992, 71(11): 5433-5444.
[9] [9] SHEN B W, SMITH G C, ANTHONY J M, et al. Diffusion barrier properties of thin selective chemical vapor deposited tungsten films [J]. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1986, 4(6): 1369-1376.
[10] [10] TING C Y, WITTMER M. The use of titanium-based contact barrier layers in silicon technology [J]. Thin Solid Films, 1982, 96(4): 327-345.
[11] [11] XIE Q, QU X P, TAN J J, et al. Superior thermal stability of Ta/TaN bi-layer structure for copper metallization [J]. Applied Surface Science, 2006, 253(3): 1666-1672.
[12] [12] LO C L, HELFRECHT B A, HE Y, et al. Opportunities and challenges of 2D materials in back-end-of-line interconnect scaling [J]. Journal of Applied Physics, 2020, 128(8):1-16.
[13] [13] SHIMADA M, MORIYAMA M, ITO K, et al. Electrical resistivity of polycrystalline Cu interconnects with nano-scale linewidth [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2006, 24(1): 190-194.
[14] [14] WEHRING B, GERLICH L, UHLIG B. XPS diffusion analysis of Ta(N)/Ru diffusion barriers for cobalt interconnects [C] // 2021 IEEE International Interconnect Technology Conference (IITC). 2021: 1-3.
[15] [15] CHYAN O, ARUNAGIRI T N, PONNUSWAMY T. Electrodeposition of copper thin film on ruthenium [J]. Journal of The Electrochemical Society, 2003, 150(5): C347-C350.
[16] [16] ARUNAGIRI T N, ZHANG Y, CHYAN O, et al. 5 nm ruthenium thin film as a directly plateable copper diffusion barrier [J]. Applied Physics Letters, 2005, 86(8): 1-3.
[17] [17] CHAN R, ARUNAGIRI T N, ZHANG Y, et al. Diffusion studies of copper on ruthenium thin film [J]. Electrochemical and Solid-State Letters, 2004, 7(8): G154-G157.
[18] [18] MOON J H, KIM S, KIM T, et al. Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires [J]. Journal of Materials Science & Technology, 2022, 105: 17-25.
[19] [19] TORAZAWA N, HIRAO S, KANAYAMA S, et al. The development of Cu filling and reliability performance with Ru-Ta alloy barrier for Cu interconnects [J]. Journal of The Electrochemical Society, 2016, 163(6): E173-E178.
[20] [20] WANG L, CAO Z H, HU K, et al. Improved diffusion barrier performance of Ru/TaN bilayer by N effusion in TaN underlayer [J]. Materials Chemistry and Physics, 2012, 135(2-3): 806-809.
[21] [21] DAMAYANTI M, SRITHARAN T, MHAISALKAR S G, et al. Study of Ru barrier failure in the Cu/Ru/Si system [J]. Journal of Materials Research, 2011, 22(9): 2505-2511.
[22] [22] HSU K C, PERNG D C, YEH J B, et al. Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects [J]. Applied Surface Science, 2012, 258(18): 7225-7230.
[23] [23] HSU K C, PERNG D C, WANG Y C. Robust ultra-thin RuMo alloy film as a seedless Cu diffusion barrier [J]. Journal of Alloys and Compounds, 2012, 516: 102-106.
[24] [24] KUO T C, SU Y H, LEE W H, et al. A study on the plating and wetting ability of ruthenium-tungsten multi-layers for advanced Cu metallization [J]. Microelectronic Engineering, 2016, 162: 27-33.
[25] [25] ROSSNAGEL S M. Characteristics of ultrathin Ta and TaN films [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2002, 20(6): 2328-2336.
[26] [26] LI L, CHEN X, WANG C H, et al. Vertical and lateral copper transport through graphene layers [J]. ACS Nano, 2015, 9(8): 8361-8367.
[27] [27] LO C L, CATALANO M, SMITHE K K H, et al. Studies of two-dimensional h-BN and MoS2 for potential diffusion barrier application in copper interconnect technology [J]. NPJ 2D Materials and Applications, 2017, 42(1): 1-7.
[28] [28] CARO A M, ARMINI S, RICHARD O, et al. Bottom-up engineering of subnanometer copper diffusion barriers using NH2-derived self-assembled monolayers [J]. Advanced Functional Materials, 2010, 20(7): 1125-1131.
[29] [29] KIKUCHI Y, IWASHITA M, NAGAI H, et al. Performance improvement for Cu interconnects by SAM and ELD technologies [C] // IEEE International Interconnect Technology Conference (IITC). 2022: 126-128.
[30] [30] OTTO F, YANG Y, BEI H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Materialia, 2013, 61(7): 2628-2638.
[31] [31] TASAN C C, DENG Y, PRADEEP K G, et al. Composition dependence of phase stability, deformation mechanisms, and mechanical properties of the CoCrFeMnNi high-entropy alloy system [J]. Jom, 2014, 66(10): 1993-2001.
[32] [32] XU X D, LIU P, TANG Z, et al. Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi [J]. Acta Materialia, 2018, 144: 107-115.
[33] [33] ZHAO Y Y, LEI Z F, LU Z P, et al. A simplified model connecting lattice distortion with friction stress of Nb-based equiatomic high-entropy alloys [J]. Materials Research Letters, 2019, 7(8): 340-346.
[34] [34] BEKE D L, ERDELYI G. On the diffusion in high-entropy alloys [J]. Materials Letters, 2016, 164: 111-113.
[35] [35] KUCZA W, DABROWA J, CIESLAK G, et al. Studies of “sluggish diffusion” effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach [J]. Journal of Alloys and Compounds, 2018, 731: 920-928.
[36] [36] CAO B X, WANG C, YANG T, et al. Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures [J]. Scripta Materialia, 2020, 187: 250-255.
[37] [37] TUNG C C, YEH J W, SHUN T T, et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system [J]. Materials Letters, 2007, 61(1): 1-5.
[38] [38] TONG C J, CHEN M R, YEH J W, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metallurgical and Materials Transactions A, 2005, 36(5): 1263-1271.
[39] [39] YAO C, WEI B, ZHANG P, et al. Facile preparation and magnetic study of amorphous Tm-Fe-Co-Ni-Mn multicomponent alloy nanofilm [J]. Journal of Rare Earths, 2011, 29(2): 133-137.
[40] [40] CHEN T K, SHUN T T, YEH J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J]. Surface and Coatings Technology, 2004, 188-189: 193-200.
[41] [41] HUANG Y S, CHEN L, LUI H W, et al. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy [J]. Materials Science and Engineering: A, 2007, 457(1-2): 77-83.
[42] [42] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
Get Citation
Copy Citation Text
ZHANG Xuefeng, DENG Bin, ZHANG Qingshan. Research Progress on Advanced Barrier Layer for Cu Interconnects[J]. Microelectronics, 2024, 54(1): 17
Category:
Received: Aug. 6, 2023
Accepted: --
Published Online: Aug. 7, 2024
The Author Email: