Journal of Shanghai Maritime University, Volume. 46, Issue 2, 137(2025)
Adaptive neural network sliding mode anti-sway control of shipborne cranes
[2] [2] CAO Y C, LI T S. Review of antiswing control of shipboard cranes [J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(2):346-354. DOI:10.1109/jas.2020.1003024.
[3] [3] VYHLDAL T,ANDERLE M,BUEK J,et al. Time-delay algorithms for damping oscillations of suspended payload by adjusting the cable length[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5):2319-2329. DOI:10.1109/tmech.2017.2736942.
[4] [4] XU W F,LIU T L,LI Y M. Kinematics, dynamics, and control of a cable-driven hyper-redundant manipulator[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(4):1693-1704. DOI:10.1109/tmech.2018.2842141.
[5] [5] CHENG L,WANG Y P,REN W,et al. Containment control of multiagent systems with dynamic leaders based on a PIn-type approach[J]. IEEE Transactions on Cybernetics, 2016, 46(12):3004-3017. DOI:10.1109/tcyb.2015.2494738.
[6] [6] QIAN Y Z,FANG Y C,LU B. Adaptive repetitive learning control for an offshore boom crane[J]. Automatica, 2017,82:21-28. DOI:10.1016/j.automatica.2017.04.003.
[7] [7] SUN N,FANG Y C,CHEN H,et al. Nonlinear antiswing control of offshore cranes with unknown parameters and persistent ship-induced perturbations:theoretical design and hardware experiments[J]. IEEE Transactions on Industrial Electronics, 2017,65(3):2629-2641. DOI: 10.1109/tie.2017.2767523.
[8] [8] SUN N,FANG Y C,CHEN H,et al. Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements:design,analysis,and experiments[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 48 (10): 1781-1793. DOI:10.1109/tsmc.2017.2700393.
[9] [9] LU B,FANG Y C,SUN N. Nonlinear coordination control of offshore boom cranes with bounded control inputs[J]. International Journal of Robust and Nonlinear Control, 2019,29(4):1165-1181. DOI:10.1002/rnc.4429.
[10] [10] LI Z, MA X,LI Y B. Anti-swing control for a double-pendulum offshore boom crane with ship roll and heave movements[C]//2020 IEEE 16th International Conference on Control & Automation (ICCA). IEEE, 2020:165-170. DOI:10.1109/ICCA 51 439.2020.9264524.
[11] [11] LU B,FANG Y C,SUN N,et al. Antiswing control of offshore boom cranes with ship roll disturbances[J]. IEEE Transactions on Control Systems Technology, 2017, 26(2):740-747. DOI:10.1109/tcst.2017.2679060.
[12] [12] YANG T,SUN N, CHEN H,et al. Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones [J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31 (3 ): 901-914. DOI:10.1109/tnnls.2019.2910580.
[15] [15] ALQAISI W K, BRAHMI B,GHOMMAM J,et al. Adaptive sliding mode control based on RBF neural network approximation for quadrotor[C]//2019 IEEE International Symposium on Robotic and Sensors Environments (ROSE). IEEE, 2019:1-7. DOI:10.1109/ROSE.2019.8790423.
Get Citation
Copy Citation Text
CHEN Zhimei, WANG Yanfang, ZHU Dongke, SHAO Xuejuan, ZHANG Jinggang. Adaptive neural network sliding mode anti-sway control of shipborne cranes[J]. Journal of Shanghai Maritime University, 2025, 46(2): 137
Received: Jan. 17, 2024
Accepted: Aug. 22, 2025
Published Online: Aug. 22, 2025
The Author Email: WANG Yanfang (s202115110211@stu.tyust.edu.cn)