Journal of Applied Optics, Volume. 46, Issue 2, 355(2025)
Fast optical flow estimation algorithm for edge GPU devices
[2] TEED Z, DENG J. DROID-SLAM: deep visual slam for monocular, stereo, and RGB-D cameras[J]. Advances in Neural Information Processing Systems, 34, 16558-16569(2021).
[3] HU Y, HE Y, LI Y et al. Efficient semantic segmentation by altering resolutions for compressed videos[C], 22627-22637(2023).
[4] DOSOVITSKIY A, FISCHER P, ILG E et al. FlowNet: learning optical flow with convolutional networks[C], 2758-2766(2015).
[5] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C], 234-241(2015).
[6] ILG E, MAYER N, SAIKIA T et al. FlowNet 2.0: evolution of optical flow estimation with deep networks[C], 2462-2470(2017).
[7] RANJAN A, BLACK M J. Optical flow estimation using a spatial pyramid network[C], 4161-4170(2017).
[8] SUN D, YANG X, LIU M Y et al. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume[C], 8934-8943(2018).
[9] TEED Z, DENG J. RAFT: recurrent all-pairs field transforms for optical flow[C], 402-419(2020).
[10] VASWANI A, SHAZEER N, PARMAR N et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 30, 5998-6008(2017).
[11] BROWN T, MANN B, RYDER N et al. Language models are few-shot learners[J]. Advances in Neural Information Processing Systems, 33, 1877-1901(2020).
[12] JIANG S, CAMPBELL D, LU Y et al. Learning to estimate hidden motions with global motion aggregation[C], 9772-9781(2021).
[13] XU H, ZHANG J, CAI J et al. GMFlow: learning optical flow via global matching[C], 8121-8130(2022).
[14] HUANG Z, SHI X, ZHANG C et al. FlowFormer: a transformer architecture for optical flow[C], 668-685(2022).
[15] KONG L, SHEN C, YANG J. FastFlowNet: a lightweight network for fast optical flow estimation[C], 10310-10316(2021).
[16] MA N, ZHANG X, ZHENG H T et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C], 116-131(2018).
[19] MAYER N, ILG E, HAUSSER P et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C], 4040-4048(2016).
[20] BUTLER D J, WULFF J, STANLEY G B et al. A naturalistic open source movie for optical flow evaluation[C], 611-625(2012).
[21] MENZE M, GEIGER A. Object scene flow for autonomous vehicles[C], 3061-3070(2015).
[22] KONDERMANN D, NAIR R, HONAUER K et al. The HCI benchmark suite: stereo and flow ground truth with uncertainties for urban autonomous driving[C], 19-28(2016).
Get Citation
Copy Citation Text
Ke SHI, Suzhen NIE, Dongxing LI, Jie CAO, Yunlong SHENG, Bin YAO, Honglin CHEN. Fast optical flow estimation algorithm for edge GPU devices[J]. Journal of Applied Optics, 2025, 46(2): 355
Category:
Received: Nov. 23, 2023
Accepted: --
Published Online: May. 13, 2025
The Author Email: Dongxing LI (李东兴)