Journal of Applied Optics, Volume. 46, Issue 2, 355(2025)

Fast optical flow estimation algorithm for edge GPU devices

Ke SHI1, Suzhen NIE1, Dongxing LI1、*, Jie CAO2, Yunlong SHENG1, Bin YAO1, and Honglin CHEN1
Author Affiliations
  • 1School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
  • 2School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    Figures & Tables(9)
    Structure diagram of MiniFlow optical flow estimation neural network model
    Structure of LMAC-Net feature extraction network
    Visualization effects of feature maps after channel rearrangement layer
    Structure diagram of flat-shaped iterative update module
    Visualization results of model on Sintel dataset
    Visualization results of models on DAVIS 1 080×1 920 pixel video
    • Table 1. Performance comparison on Sintel and KITTI datasets

      View table
      View in Article

      Table 1. Performance comparison on Sintel and KITTI datasets

      方法Sintel(train)KITTI-15(train)参数/Mb时间/s
      CleanFinalFl-epeF1-all/%
      RAFT1.432.715.0417.44.800.327*
      RAFT-ft(0.76)(1.22)(0.63)(1.5)4.800.327*
      FlowNet22.023.1410.0630.37162.520.116
      FlowNet2-ft(1.45)(2.01)(2.30)(8.61)162.520.116
      LiteFlowNet2.484.0410.3928.505.370.055
      LiteFlowNet-ft(1.35)(1.78)(1.62)(5.58)5.370.055
      SPyNet4.125.571.200.050
      SPyNet-ft(3.17)(4.32)1.200.050
      RAFT-small-102.213.389.5528.670.990.041*
      PWC-Net2.553.9310.3533.678.750.034
      PWC-Net-ft(2.02)(2.08)(2.16)(9.80)8.750.034
      LiteFlowNetX3.584.7915.8134.900.900.030
      RAFT-small-42.894.2211.7734.230.990.027*
      PWC-Net-small2.834.084.080.024
      FastFlowNet2.894.1412.2433.101.370.011
      FastFlowNet_v22.894.1412.2433.101.370.012*
      FastFlowNet-ft(2.08)(2.71)(2.13)(8.21)1.370.011
      MiniFlow2.523.7712.9839.730.540.009*
      MiniFlow-ft(1.46)(1.88)(1.47)(6.09)0.540.009*
    • Table 2. Performance comparison of RAFT-small, FastFlowNet_v2, and MiniFlow on NX

      View table
      View in Article

      Table 2. Performance comparison of RAFT-small, FastFlowNet_v2, and MiniFlow on NX

      方法Sintel (train)速度/(frame/s)参数/Mb
      CleanFinalNX
      RAFT-small-42.894.222.10.99
      FastFlowNet_v22.894.142.771.37
      MiniFlow2.523.7712.570.54
    • Table 3. Performance comparison of different models on Sintel dataset

      View table
      View in Article

      Table 3. Performance comparison of different models on Sintel dataset

      方法Sintel (train)时间/ms参数/Mb
      CleanFinal1080Ti
      LMAC-Net3.104.188.70.54
      ResNet3.324.46100.56
      FIUM3.104.188.70.54
      ConvGRU3.084.398.90.82
    Tools

    Get Citation

    Copy Citation Text

    Ke SHI, Suzhen NIE, Dongxing LI, Jie CAO, Yunlong SHENG, Bin YAO, Honglin CHEN. Fast optical flow estimation algorithm for edge GPU devices[J]. Journal of Applied Optics, 2025, 46(2): 355

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 23, 2023

    Accepted: --

    Published Online: May. 13, 2025

    The Author Email: Dongxing LI (李东兴)

    DOI:10.5768/JAO202546.0202008

    Topics