Journal of Inorganic Materials, Volume. 39, Issue 5, 457(2024)

Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application

Hui ZHANG1,2, Zhipeng XU1,2, Congtan ZHU1,2, Xueyi GUO1,2, and Ying YANG1,2、*
Author Affiliations
  • 11. School of Metallurgy and Environment, Central South University, Changsha 410083, China
  • 22. Hunan Key Laboratory of Nonferrous Metal Resources Recycling, Central South University, Changsha 410083, China
  • show less
    References(65)

    [2] GREEN M A, DUNLOP E D, YOSHITA M et al. Solar cell efficiency tables (version 62)[J]. Prog. Photovoltaics, 651(2023).

    [3] BU T L, ONO L K, LI J et al. Modulating crystal growth of formamidinium-caesium perovskites for over 200 cm2 photovoltaic sub-modules[J]. Nat. Energy, 528(2022).

    [4] LIN H, YANG M, RU X N et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers[J]. Nat. Energy, 789(2023).

    [5] LEE J, LEE D, JEONG D et al. Control of crystal growth toward scalable fabrication of perovskite solar cells[J]. Adv. Funct. Mater., 1807047(2019).

    [8] PARIDA B, SINGH A, SOOPY A K K et al. Recent developments in upscalable printing techniques for perovskite solar cells[J]. Adv. Sci., 220308(2022).

    [10] ZHANG H, ZHAO C X, YAO J X et al. Dopant-free NiOx nanocrystals: a low-cost and stable hole transport material for commercializing perovskite optoelectronics[J]. Angew. Chem. Int. Ed.(2023).

    [12] WU X, GAO D P, SUN X L et al. Backbone engineering enables highly efficient polymer holetransporting materials for inverted perovskite solar cells[J]. Adv. Mater., 2208431(2022).

    [13] CHEN Y, LIN P, CAI B et al. Research progress of inorganic hole transport materials in perovskite solar cells[J]. J. Inorg. Mater., 991(2023).

    [15] PARK B W, KWON H W, LEE Y H et al. Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells[J]. Nat. Energy, 419(2021).

    [16] LI J B, MUNIR R, FAN Y Y et al. Phase transition control for high-performance blade-coated perovskite solar cells[J]. Joule, 1313.

    [17] ZHANG J W, BU T L, LI J et al. Two-step sequential blade-coating of high quality perovskite layers for efficient solar cells and modules[J]. J. Mater. Chem. A, 8447(2020).

    [18] WEN Y T, LI J, GAO X F et al. Two-step sequential blade-coating large-area FA-based perovskite thin film via a controlled PbI2 microstructure[J]. Acta Phys.-Chim. Sin., 2203048(2023).

    [19] TAN L G, ZHOU J J, ZHAO X et al. Combined vacuum evaporation and solution process for high-efficiency large‐area perovskite solar cells with exceptional reproducibility[J]. Adv. Mater., 2205027(2023).

    [21] LI D Y, ZHANG D Y, LIM K S et al. A review on scaling up perovskite solar cells[J]. Adv. Funct. Mater., 2008621(2021).

    [22] CHEN Y J, WU H J, MA J J et al. Droplet manipulation and crystallization regulation in inkjet-printed perovskite film formation[J]. CCS Chem., 1465(2022).

    [23] CHEN C S, CHEN J X, HAN H C et al. Perovskite solar cells based on screen-printed thin films[J]. Nature, 266(2022).

    [24] LI J, WANG H, CHIN X Y et al. Highly efficient thermally co-evaporated perovskite solar cells and mini-modules[J]. Joule, 1035(2020).

    [25] LEYDEN M R, JIANG Y, QI Y B et al. Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability[J]. J. Mater. Chem. A, 13125(2016).

    [27] SANCHEZ S, PFEIFER L, VACHOPOUOUS N et al. Rapid hybrid perovskite film crystalization form solution[J]. Chem. Sov. Rev., 7108(2021).

    [28] LIU C, CHENG Y B, GE Z Y. Understanding of perovskite crystal growth and film formation in scalable deposition processes[J]. Chem. Sov. Rev., 1653(2020).

    [29] GEISTERT K, TERNES S, RITZER D B et al. Controlling thin film morphology formation during gas quenching of slot-die coated perovskite solar modules[J]. ACS Appl. Mater. Interfaces, 52519(2023).

    [30] SHEN Z C, HAN Q F, LUO X H et al. Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells[J]. Energy Environ. Sci., 1078(2022).

    [32] ZHENG Z W, WANG S Y, HU Y et al. Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability[J]. Chem. Sci., 2167(2022).

    [33] MUSCARELLA L A, EHRLER B. The influence of strain on phase stability in mixed-halide perovskites[J]. Joule, 2016(2022).

    [34] LIU X H, CHEN M, ZHANG Y et al. High-efficiency perovskite photovoltaic modules achieved via cesium doping[J]. Chem. Eng. J., 133713(2022).

    [36] SUN S J, TIIHONEN A, OVIEDO F et al. A data fusion approach to optimize compositional stability of halide perovskites[J]. Matter, 1305(2021).

    [37] SALIBA M, MATSUI T, DOMANSKI K et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 206(2016).

    [38] ZHAO Y, MA F, QU Z H et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells[J]. Science, 531(2022).

    [39] CHANG J H, FENG E M, LI H Y et al. Crystallization and orientation modulation enable highly efficient doctor-bladed perovskite solar cells[J]. Nano-Micro Letter, 164(2023).

    [40] DENG Y H, XU S, CHEN S S et al. Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini- modules with improved photostability[J]. Nat. Energy, 633(2021).

    [41] JACOBSSON T J, CORREA-BAEBA J P, NARAKI E H et al. Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells[J]. J. Am. Chem. Soc., 10331(2016).

    [42] MACPHERSON S, DOHERTY T A S, WINCHESTAR A J et al. Local nanoscale phase impurities are degradation sites in halide perovskite[J]. Nature, 294(2022).

    [43] LIANG J W, HU X Z, WANG C et al. Origins and influences of metallic lead in perovskite solar cells[J]. Joule, 816.

    [44] CHAO L F, NIU T T, GAO W Y et al. Solvent engineering of the precursor solution toward large-area production of perovskite solar cells[J]. Adv. Mater., 2005410(2021).

    [47] LI H Y, BU T, LI J et al. Ink engineering for blade coating FA-dominated perovskites in ambient air for efficient solar cells and modules[J]. ACS Appl. Mater. Interfaces, 18724(2021).

    [48] LEE D K, LIM K S, LEE J W et al. Scalable perovskite coating via anti-solvent-free Lewis acid-base adduct engineering for efficient perovskite solar modules[J]. J. Mater. Chem. A, 3018(2021).

    [49] YANG Z C, ZHANG W J, WU S H et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module[J]. Adv. Sci.(2021).

    [50] CHUNG J, KIM S, LI Y et al. Engineering perovskite precursor inks for scalable production of high-efficiency perovskite photovoltaic modules[J]. Adv. Energy Mater., 2300595(2023).

    [51] YOO J W, JANG J H, KIM U et al. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol- based formamidinium lead tri-iodide precursor solution[J]. Joule, 2420(2021).

    [52] LI J Z, DAGAR J, SHARGAIEVA O et al. 20.8% slot-die coated MAPbI3 perovskite solar cells by optimal DMSO-content and age of 2-ME based precursor inks[J]. Adv. Energy Mater., 2003460(2021).

    [53] LI J Z, DAGAR J, SHARGAIEVA O et al. Ink design enabling slot-die coated perovskite solar cells with >22% power conversion efficiency, micro-modules, and 1 year of outdoor performance evaluation[J]. Adv. Energy Mater., 2203898(2022).

    [54] DENG Y H, BRACKE C H V, DAI X Z et al. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films[J]. Sci. Adv.(2019).

    [55] YUAN L H, CHEN X N, GUO X M et al. Volatile perovskite precursor ink enables window printing of phase-pure FAPbI3 perovskite solar cells and modules in ambient atmosphere[J]. Angew. Chem. Int. Ed.(2024).

    [56] NOEL N K, HABISREYTINGER S N, WENGER B et al. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films[J]. Energy Environ. Sci., 145(2016).

    [57] LIANG Q, LIU K, SUN M et al. Manipulating crystallization kinetics in high-performance blade-coated perovskite solar cells via cosolvent-assisted phase transition[J]. Adv. Mater., 2200276(2022).

    [58] ZHAI P, REN L X, LI S Q et al. Light modulation strategy for highest-efficiency water-processed perovskite solar cells[J]. Matter, 4450(2022).

    [60] TONG G Q, SON D, ONO L K et al. Scalable fabrication of >90 cm2 perovskite solar modules with >1000 h operational stability based on the intermediate phase strategy[J]. Adv. Energy Mater., 2003712(2021).

    [61] ZHOU T, XU Z Y, WANG R et al. Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability[J]. Adv. Mater., 2200705(2022).

    [63] CHEN R H, WU Y Z, WANG Y K et al. Crown ether-assisted growth and scaling up of FACsPbI3 films for efficient and stable perovskite solar modules[J]. Adv. Funct. Mater., 2008760(2021).

    [64] HUANG H H, LIU Q H, TSAI H et al. A simple one-step method with wide processing window for high-quality perovskite mini-module fabrication[J]. Joule, 958(2021).

    [65] HUANG Z J, BAI Y, HUANG X D et al. Anion-π interactions supress phase impurities in FAPbI3 solar cells[J]. Nature, 531(2023).

    [66] MENG Y Y, WANG Y L, LIU C et al. Epitaxial growth of α-FAPbI3 at a well-matched heterointerface for efficient perovskite solar cells and solar modules[J]. Adv. Mater., 2309208(2024).

    [67] MIAO Y, REN M, WANG H F et al. Surface termination on unstable methylammonium-based perovskite using a steric barrier for improved perovskite solar cells[J]. Angew. Chem. Int. Ed.(2023).

    [68] LIU D C, CHEN C, WANG X Z et al. Enhanced quasi-Fermi level splitting of perovskite solar cells by universal dual-functional polymer[J]. Adv. Mater., 2310962(2023).

    Tools

    Get Citation

    Copy Citation Text

    Hui ZHANG, Zhipeng XU, Congtan ZHU, Xueyi GUO, Ying YANG. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application[J]. Journal of Inorganic Materials, 2024, 39(5): 457

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 28, 2023

    Accepted: --

    Published Online: Jul. 8, 2024

    The Author Email: Ying YANG (muyicaoyang@csu.edu.cn)

    DOI:10.15541/jim20230448

    Topics