Optoelectronic Technology, Volume. 43, Issue 2, 91(2023)

The Current Bottleneck and Technical Progress of Micro LED

Jia ZHOU, Jinjian YAN, Zhiqiang LIU, Ying JIANG, Yang HUANG Kai BAO, Jinchai LI, and Deyun ZHOU
Author Affiliations
  • School of Microelectronics, Northwestern Polytechnical University, Xi'an 7092, CHN
  • show less
    References(101)

    [1] Schadt M. Milestone in the history of field-effect liquid crystal displays and materials[J]. Japanese Journal of Applied Physics, 03B001(2009).

    [2] Jin S X, Li J, Li J Z et al. GaN microdisk light emitting diodes[J]. Applied Physics Letters, 76, 631-633(2000).

    [5] Jiang H X, Jin S X, Li J et al. III-nitride blue microdisplays[J]. Applied Physics Letters, 78, 1303-1305(2001).

    [6] Chen Z, Yan S, Danesh C. Micro LED technologies and applications: Characteristics, fabrication, progress, and challenges[J]. Journal of Physics D: Applied Physics, 54, 123001(2021).

    [7] Parbrook P J, Corbett B, Han J et al. Micro-light emitting diode: From chips to applications[J]. Laser & Photonics Reviews, 15, 2000133(2021).

    [8] Lin J Y, Jiang H X. Development of microLED[J]. Applied Physics Letters, 116, 100502(2020).

    [9] Huang Y, Hsiang E L, Deng M Y et al. Mini-LED, Micro LED and OLED displays: present status and future perspectives[J]. Light: Science & Applications, 9, 1-16(2020).

    [10] Lee V W, Twu N, Kymissis I. Micro‐LED Technologies and Applications[J]. Information Display, 32, 16-23(2016).

    [11] Lee H E, Shin J H, Park J H et al. Micro light‐emitting diodes for display and flexible biomedical applications[J]. Advanced Functional Materials, 29, 1808075(2019).

    [12] Wu T, Sher C W, Lin Y et al. Mini-LED and Micro-LED: promising candidates for the next generation display technology[J]. Applied Sciences, 8, 1557(2018).

    [13] Miao W C, Hsiao F H, Sheng Y et al. Microdisplays: Mini-LED, Micro-OLED, and Micro LED[J]. Advanced Optical Materials, 2300112(2023).

    [14] Huang Y, Tan G, Gou F et al. Prospects and challenges of mini-LED and micro-LED displays[J]. Journal of the Society for Information Display, 27, 387-401(2019).

    [15] Behrman K, Kymissis I. Micro light-emitting diodes[J]. Nature Electronics, 5, 564-573(2022).

    [17] Lu S, Li J, Huang K et al. Designs of InGaN Micro LED structure for improving quantum efficiency at low current density[J]. Nanoscale Research Letters, 16, 99(2021).

    [18] Chang L, Yeh Y W, Hang S et al. Alternative strategy to reduce surface recombination for InGaN/GaN Micro-light-Emitting diodes—Thinning the quantum barriers to manage the current spreading[J]. Nanoscale Research Letters, 15, 160(2020).

    [19] Shim J I, Shin D S. Measuring the internal quantum efficiency of light-emitting diodes: Towards accurate and reliable room-temperature characterization[J]. Nanophotonics, 7, 1601-1615(2018).

    [20] Kuritzky L Y, Weisbuch C, Speck J S. Prospects for 100% wall-plug efficient III-nitride LEDs[J]. Optics Express, 26, 16600-16608(2018).

    [21] Bulashevich K A, Konoplev S S, Karpov S Y. Effect of die shape and size on performance of III-Nitride Micro LEDs: A modeling study[J]. Photonics, 5, 41(2018).

    [22] Yan G, Hyun B R, Jiang F et al. Exploring superlattice DBR effect on a micro-LED as an electron blocking layer[J]. Optics Express, 29, 26255-26264(2021).

    [23] Kou J, Shen C C, Shao H et al. Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes[J]. Optics Express, 27(2019).

    [25] Qiu R, Lu H, Chen D et al. Optimization of inductively coupled plasma deep etching of GaN and etching damage analysis[J]. Applied Surface Science, 257, 2700-2706(2011).

    [26] Kato M, Mikamo K, Ichimura M et al. Characterization of plasma etching damage on p-type GaN using Schottky diodes[J]. Journal of Applied Physics, 103(2008).

    [27] Hwang D, Mughal A, Pynn C D et al. Sustained high external quantum efficiency in ultrasmall blue III–nitride Micro-LEDs[J]. Applied Physics Express, 10(2017).

    [28] Yang F, Xu Y, Li L et al. Optical and microstructural characterization of Micro LED with sidewall treatment[J]. Journal of Physics D: Applied Physics, 55, 435103(2022).

    [29] Wong M S, Lee C, Myers D J et al. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation[J]. Applied Physics Express, 12(2019).

    [30] Park J H, Pristovsek M, Cai W et al. Interplay of sidewall damage and light extraction efficiency of micro-LEDs[J]. Optics Letters, 47, 2250-2253(2022).

    [31] Yang Y, Cao X A. Removing plasma-induced sidewall damage in GaN-based light-emitting diodes by annealing and wet chemical treatments[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, 27, 2337-2341(2009).

    [32] Choi W H, You G, Abraham M et al. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes[J]. Journal of Applied Physics, 116(2014).

    [33] Chen D, Wang Z, Hu F C et al. Improved electro-optical and photoelectric performance of GaN-based micro-LEDs with an atomic layer deposited AlN passivation layer[J]. Optics Express, 29, 36559(2021).

    [35] Lee T Y, Huang Y M, Huang Y M et al. Increase in the efficiency of III-nitride micro LEDs by atomic layer deposition[J]. Optics Express, 30, 18552-18561(2022).

    [36] Huang H H, Huang S K, Tsai Y L et al. Investigation on reliability of red micro-light emitting diodes with atomic layer deposition passivation layers[J]. Optics Express, 28, 38184-38195(2020).

    [37] Sheen M, Ko Y, Kim D et al. Highly efficient blue InGaN nanoscale light-emitting diodes[J]. Nature, 608, 56-61(2022).

    [38] Zhu Z, Tao T, Liu B et al. Improved optical and electrical characteristics of GaN-Based Micro LEDs by optimized Sidewall Passivation[J]. Micromachines, 14, 10(2023).

    [39] Wong M S, Kearns J A, Lee C et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments[J]. Optics Express, 28, 5787(2020).

    [40] Yu J, Tao T, Liu B et al. Investigations of sidewall passivation technology on the optical performance for smaller size GaN-Based Micro LEDs[J]. Crystals, 11, 403(2021).

    [41] Bai J, Cai Y, Feng P et al. Ultrasmall, ultracompact and ultrahigh efficient ingan micro light emitting diodes (μLEDs) with narrow spectral line width[J]. ACS Nano, 14, 6906-6911(2020).

    [42] Feng P, Xu C, Bai J et al. A simple approach to achieving ultrasmall III-Nitride microlight-emitting diodes with red emission[J]. ACS Applied Electronic Materials, 4, 2787-2792(2022).

    [43] Park J, Choi J H, Kong K et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses[J]. Nature Photonics, 15, 449-455(2021).

    [44] Zhuang Z, Iida D, Velazquez-Rizo M et al. Ultra-small InGaN green micro-light-emitting diodes fabricated by selective passivation of p-GaN[J]. Optics Letters, 46, 5092-5095(2021).

    [45] Zhuang Z, Iida D, Ohkawa K. Ultrasmall and ultradense InGaN-based RGB monochromatic micro-light-emitting diode arrays by pixilation of conductive p-GaN[J]. Photonics Research, 9, 2429-2434(2021).

    [46] Huang S C, Li H, Zhang Z H et al. Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme[J]. Applied Physics Letters, 110(2017).

    [47] Hang S, Zhang M, Zhang Y et al. Artificially formed resistive ITO/p-GaN junction to suppress the current spreading and decrease the surface recombination for GaN-based micro-light emitting diodes[J]. Optics Express, 29, 31201(2021).

    [48] Liu Z J, Chong W C, Wong K M et al. A novel BLU-free full-color LED projector using LED on silicon micro-displays[J]. IEEE Photonics Technology Letters, 25, 2267-2270(2013).

    [49] Chong W C, Wong K M, Liu Z J et al. A novel full-color 3LED projection system using R-G-B light emitting diodes on silicon (LEDoS) micro-displays[C], 838-841(2013).

    [50] KGOnTech. News: Wave Optics & Jade Bird Display Micro LED Partnership[J].

    [51] Chen K J, Chen H C, Tsai K A et al. Resonant-enhanced full-color emission of quantum-dot-based display technology using a pulsed spray method[J]. Advanced Functional Materials, 22, 5138-5143(2012).

    [52] Anwar A R, Sajjad M T, Johar M A et al. Recent progress in Micro LED-based display technologies[J]. Laser & Photonics Reviews, 16, 2100427(2022).

    [53] Ma T, Chen J, Chen Z et al. Progress in color conversion technology for Micro LED[J]. Advanced Materials Technologies, 8, 2200632(2023).

    [54] Zhu G, Liu Y, Ming R et al. Mass transfer, detection and repair technologies in micro-LED displays[J]. Science China Materials, 65, 2128-2153(2022).

    [56] Wu Y, Ma J, Su P et al. Full-color realization of Micro LED displays[J]. Nanomaterials, 10, 2482(2020).

    [57] Ryu J E, Park S, Park Y et al. Technological breakthroughs in chip fabrication, transfer, and color conversion for high-performance Micro LED displays[J]. Advanced Materials, 2204947(2023).

    [58] Zhou X, Tian P, Sher C W et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J]. Progress in Quantum Electronics, 71, 100263(2020).

    [59] Bibl A, Higginson J A, Law H fai S et al. Method of transferring a micro device[P].

    [60] Micro device with stabilization post[P]. US.

    [61] Wu M H, Fang Y H, Chao C H. Electric-programmable magnetic module and picking-up and placement process for electronic devices[P].

    [62] Pan K, Sun J, Lin C et al. Highly effective transfer of micro-LED pixels to the intermediate and rigid substrate with weak and tunable adhesion by thiol modification[J]. Nanoscale, 15, 4420-4428(2023).

    [63] Park S I, Xiong Y, Kim R H et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays[J]. Science, 325, 977-981(2009).

    [64] Meitl M, Radauscher E, Bonafede S et al. 55-1: Invited paper: Passive matrix displays with transfer-printed microscale inorganic LEDs[J]. SID Symposium Digest of Technical Papers, 47, 743-746(2016).

    [65] Meitl M A, Zhu Z T, Kumar V et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp[J]. Nature Materials, 5, 33-38(2006).

    [66] Bohandy J, Kim B F, Adrian F J. Metal deposition from a supported metal film using an excimer laser[J]. Journal of Applied Physics, 60, 1538-1539(1986).

    [67] Miller R, Marinov V, Swenson O et al. Noncontact selective laser-assisted placement of thinned semiconductor dice[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2, 971-978(2012).

    [68] Marinov V, Swenson O, Miller R et al. Laser-enabled advanced packaging of ultrathin bare dice in flexible substrates[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2, 569-577(2012).

    [69] Saeedi E, Kim S, Parviz B A. Self-assembled crystalline semiconductor optoelectronics on glass and plastic[J]. Journal of Micromechanics and Microengineering, 18(2008).

    [70] Choi M, Jang B, Lee W et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing[J]. Advanced Functional Materials, 27, 1606005(2017).

    [71] Tavares L, Kjelstrup-Hansen J, Rubahn H G. Efficient roll-on transfer technique for well-aligned organic nanofibers[J]. Small, 7, 2460-2463(2011).

    [73] Chang W, Kim J, Kim M et al. Concurrent self-assembly of RGB microLEDs for next-generation displays[J]. Nature, 617, 287-291(2023).

    [74] Gou F, Hsiang E L, Tan G et al. Angular color shift of micro-LED displays[J]. Optics Express, 27, A746-A757(2019).

    [75] Li P, Li H, Zhang H et al. Size-independent peak external quantum efficiency (>2%) of InGaN red micro-light-emitting diodes with an emission wavelength over 600 nm[J]. Applied Physics Letters, 119(2021).

    [77] Zhuang Z, Iida D, Ohkawa K. InGaN-based red light-emitting diodes: from traditional to micro-LEDs[J]. Japanese Journal of Applied Physics, 61, SA0809(2021).

    [78] Zhang S, Zhang J, Gao J et al. Efficient emission of InGaN-based light-emitting diodes: Toward orange and red[J]. Photonics Research, 8, 11001671(2020).

    [79] Even A, Laval G, Ledoux O et al. Enhanced In incorporation in full InGaN heterostructure grown on relaxed InGaN pseudo-substrate[J]. Applied Physics Letters, 110, 262103(2017).

    [81] Pasayat S S, Gupta C, Wong M S et al. Demonstration of ultra-small (<10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays[J]. Applied Physics Express, 14(2020).

    [82] Pasayat S S, Gupta C, Wong M S et al. Growth of strain-relaxed InGaN on micrometer-sized patterned compliant GaN pseudo-substrates[J]. Applied Physics Letters, 116, 111101(2020).

    [83] Han H V, Lin H Y, Lin C C et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology[J]. Optics Express, 23, 32504(2015).

    [84] Li L, Tang G, Shi Z et al. Transfer-printed, tandem microscale light-emitting diodes for full-color displays[J]. Proceedings of the National Academy of Sciences, 118(2021).

    [85] Shin J, Kim H, Sundaram S et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer[J]. Nature, 614, 81-87(2023).

    [86] Chen D, Chen Y C, Zeng G et al. Integration technology of Micro LED for next-generation display[J]. Research, 6(2023).

    [87] Yang J, Park H, Kim B et al. Active-matrix micro-light-emitting diode displays driven by monolithically integrated dual-gate oxide thin-film transistors[J]. Journal of Materials Chemistry C, 10, 9699-9706(2022).

    [88] Um J G, Jeong D Y, Jung Y et al. Active-matrix gan µ-led display using oxide thin-film transistor backplane and flip chip led bonding[J]. Advanced Electronic Materials, 5, 1800617(2019).

    [89] Jin T, Kim S, Han J H et al. Demonstration of programmable light intensity of a micro-LED with a Hf-based ferroelectric ITZO TFT for Mura-free displays[J]. Nanoscale Advances, 5, 1316-1322(2023).

    [90] Guo W, Tai J, Liu J et al. Process optimization of passive matrix GaN-Based Micro LED arrays for display applications[J]. Journal of Electronic Materials, 48, 5195-5201(2019).

    [91] Liou J C, Lin W D. Micro-device array LED processes on CMOS/MEMS substrate[J]. 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 776-779(2017).

    [92] McKendry J J D, Massoubre D, Zhang S et al. Visible-light communications using a CMOS-controlled Micro-light- emitting-Diode array[J]. Journal of Lightwave Technology, 30, 61-67(2012).

    [93] Zhang X, Yin L, Ren K et al. Research on simulation design of MOS driver for Micro LED[J]. Electronics, 11, 2044(2022).

    [94] Zhang S, McKendry J J D, Gong Z et al. Directly color-tunable smart display based on a CMOS-controlled micro-LED array[J]. IEEE Photonics Conference 2012, 435-436(2012).

    [95] Li P, Zhang X, Chong W C et al. Monolithic thin film red LED active-matrix micro-display by flip-chip technology[J]. IEEE Photonics Technology Letters, 33, 603-606(2021).

    [96] Zhang X, Qi L, Chong W C et al. Active matrix monolithic micro-LED full-color micro-display[J]. Journal of the Society for Information Display, 29, 47-56(2021).

    [97] Meng W, Xu F, Yu Z et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix[J]. Nature Nanotechnology, 16, 1231-1236(2021).

    [98] Zhang K, Han T, Cho W K et al. Investigation of enhanced ambient contrast ratio in novel Micro/Mini-LED displays[J]. Nanomaterials, 11, 3304(2021).

    [99] Chang K P, Chien Y W, Wang P H et al. Characteristics of high-power impulse magnetron sputtering ITO/Ag/ITO films for application in transparent Micro LED displays[J]. ACS Applied Electronic Materials, 5, 905-912(2023).

    [100] Peng D, Zhang K, Chao V S D et al. Full-color pixelated-addressable light emitting diode on transparent substrate (LEDoTS) Micro-Displays by CoB[J]. Journal of Display Technology, 12, 742-746(2016).

    [101] Sun Y, Fan J, Liu M et al. Highly transparent, ultra-thin flexible, full-color mini-LED display with indium–gallium–zinc oxide thin-film transistor substrate[J]. Journal of the Society for Information Display, 28, 926-935(2020).

    [102] Yu J, Xu F, Tao T et al. Gallium Nitride blue/green Micro LEDs for high brightness and transparency display[J]. IEEE Electron Device Letters, 44, 281-284(2023).

    [103] Hartensveld M, Zhang J. Monolithic integration of gan nanowire light-emitting diode with field effect transistor[J]. IEEE Electron Device Letters, 40, 427-430(2019).

    [104] Pandey A, Malhotra Y, Wang P et al. N-polar InGaN/GaN nanowires: Overcoming the efficiency cliff of red-emitting micro-LEDs[J]. Photonics Research, 10, 1107(2022).

    [105] Lu W, Nakayama N, Ito K et al. Morphology control and crystalline quality of p-Type GaN shells grown on coaxial GaInN/GaN multiple quantum shell nanowires[J]. ACS Applied Materials & Interfaces, 13, 54486-54496(2021).

    [106] Zhuang Z, Guo X, Zhang G et al. Large-scale fabrication and luminescence properties of GaN nanostructures by a soft UV-curing nanoimprint lithography[J]. Nanotechnology, 24, 405303(2013).

    [107] Zhuang Z, Guo X, Liu B et al. Great enhancement in the excitonic recombination and light extraction of highly ordered InGaN/GaN elliptic nanorod arrays on a wafer scale[J]. NanoTechnology, 27(2015).

    [108] Zhuang Z, Guo X, Liu B et al. High color rendering index hybrid III-Nitride/nanocrystals white light-emitting diodes[J]. Advanced Functional Materials, 26, 36-43(2016).

    [109] Bi Z, Lenrick F, Colvin J et al. InGaN platelets: Synthesis and applications toward green and red light-emitting diodes[J]. Nano Letters, 19, 2832-2839(2019).

    [110] Bi Z, Lu T, Colvin J et al. Realization of ultrahigh quality InGaN platelets to be used as relaxed templates for red Micro LEDs[J]. ACS Applied Materials & Interfaces, 12, 17845-17851(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jia ZHOU, Jinjian YAN, Zhiqiang LIU, Ying JIANG, Yang HUANG Kai BAO, Jinchai LI, Deyun ZHOU. The Current Bottleneck and Technical Progress of Micro LED[J]. Optoelectronic Technology, 2023, 43(2): 91

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 1, 2023

    Accepted: --

    Published Online: Aug. 31, 2023

    The Author Email:

    DOI:10.19453/j.cnki.1005-488x.2023.02.001

    Topics