Chinese Journal of Lasers, Volume. 48, Issue 2, 0202010(2021)
Preparation and Application of Microfluidic Raman Detection Chip
[2] Wang J, He Y, Xia H et al. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization[J]. Lab on a Chip, 10, 1993-1996(2010).
[3] Zhu W, Wen B Y, Jie L J et al. Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer[J]. Biosensors and Bioelectronics, 154, 112067(2020).
[4] Lim C, Hong J, Chung B G et al. Optofluidic platforms based on surface-enhanced Raman scattering[J]. The Analyst, 135, 837-844(2010).
[5] Whang K, Lee J H, Shin Y et al. Plasmonic bacteria on a nanoporous mirror via hydrodynamic trapping for rapid identification of waterborne pathogens[J]. Light: Science & Applications, 7, 68(2018).
[6] Banholzer M J, Millstone J E, Qin L D et al. Rationally designed nanostructures for surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 37, 885-897(2008).
[7] Chen L X, Choo J. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips[J]. Electrophoresis, 29, 1815-1828(2008).
[10] Park W H, Kim Z H. Charge transfer enhancement in the SERS of a single molecule[J]. Nano Letters, 10, 4040-4048(2010).
[11] Jiang Y, Wang H Y, Wang H et al. Surface plasmon enhanced fluorescence of dye molecules on metal grating films[J]. The Journal of Physical Chemistry C, 115, 12636-12642(2011).
[12] Yuan S F, Chen C, Guo Q S et al. Enhancing infrared emission of mercury telluride (HgTe) quantum dots by plasmonic structures[J]. Light: Science & Applications, 9, 37(2020).
[15] Fang H H, Ding R, Lu S Y et al. Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals[J]. Advanced Functional Materials, 22, 33-38(2012).
[16] Smith W E. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis[J]. Chemical Society Reviews, 37, 955-964(2008).
[17] Fang H H, Chen Q D, Yang J et al. Two-photon pumped amplified spontaneous emission from cyano-substituted oligo(p-phenylenevinylene) crystals with aggregation-induced emission enhancement[J]. The Journal of Physical Chemistry C, 114, 11958-11961(2010).
[18] Liu Y C, Yang K H, Hsu T C. Enhancements in intensity and thermal stability of Raman spectra based on roughened gold substrates modified by underpotential deposition of silver[J]. Journal of Raman Spectroscopy, 40, 903-907(2009).
[19] Vazquez R M, Osellame R, Nolli D et al. Integration of femtosecond laser written optical waveguides in a lab-on-chip[J]. Lab Chip, 9, 91-96(2009).
[20] Sakakura M, Lei Y, Wang L et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass[J]. Light, Science & Applications, 9, 15(2020).
[21] Wu D, Wu S Z, Niu L G et al. High numerical aperture microlens arrays of close packing[J]. Applied Physics Letters, 97, 031109(2010).
[22] Juodkazis S, Watanabe M et al. Femtosecond laser-assisted three-dimensional microfabrication in silica[J]. Optics Letters, 26, 277-279(2001).
[25] Tang J, Guo H, Zhao M M et al. Ag nanoparticles cladded with parylene for high-stability microfluidic surface-enhanced Raman scattering (SERS) biochemical sensing[J]. Sensors and Actuators B, 242, 1171-1176(2017).
[26] Wu Y Z, Jiang Y, Zheng X S et al. Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography[J]. Royal Society Open Science, 5, 172034(2018).
[27] Gao R K, Lv Z, Mao Y S et al. SERS-based pump-free microfluidic chip for highly sensitive immunoassay of prostate-specific antigen biomarkers[J]. ACS Sensors, 4, 938-943(2019).
[28] Gjergjizi B, Çoun F, Yıldırım E et al. SERS-based ultrafast and sensitive detection of luteinizing hormone in human serum using a passive microchip[J]. Sensors and Actuators B: Chemical, 269, 314-321(2018).
[30] Xu K C, Zhou R, Takei K et al. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics[J]. Advanced Science, 6, 1900925(2019).
[31] Linh V T N, Moon J, Mun C et al. A facile low-cost paper-based SERS substrate for label-free molecular detection[J]. Sensors and Actuators B: Chemical, 291, 369-377(2019).
[32] Dougan J A, Faulds K. Surface enhanced Raman scattering for multiplexed detection[J]. The Analyst, 137, 545-554(2012).
[34] MacKenzie M, Chi H N, Varma M et al. Femtosecond laser fabrication of silver nanostructures on glass for surface enhanced Raman spectroscopy[J]. Scientific Reports, 9, 17058(2019).
[35] Kim K B, Han J H, Choi H et al. Dynamic preconcentration of gold nanoparticles for surface-enhanced Raman scattering in a microfluidic system[J]. Small, 8, 378-383(2012).
[36] Shin S, Lee J, Lee S et al. A droplet-based high-throughput SERS platform on a droplet-guiding-track-engraved superhydrophobic substrate[J]. Small, 13, 1602865(2017).
[37] Chang S, Yun W, Eichmann S L et al. Magnetic SERS composite nanoparticles for microfluidic oil reservoir tracer detection and nanoprobe applications[J]. ACS Applied Nano Materials, 2, 997-1004(2019).
[38] Wang G, Li K R, Purcell F J et al. Three-dimensional clustered nanostructures for microfluidic surface-enhanced Raman detection[J]. ACS Applied Materials & Interfaces, 8, 24974-24981(2016).
[39] Zhao Y B, Yamaguchi Y, Ni Y et al. A SERS-based capillary sensor for the detection of mercury ions in environmental water[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 233, 118193(2020).
[40] Quang L X, Lim C, Seong G H et al. A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis[J]. Lab on a Chip, 8, 2214-2219(2008).
[42] Parisi J, Dong Q C, Lei Y. In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing[J]. RSC Advances, 5, 14081-14089(2015).
[43] Lu H, Zhu L, Zhang C L et al. Highly uniform SERS-active microchannel on hydrophobic PDMS: a balance of high reproducibility and sensitivity for detection of proteins[J]. RSC Advances, 7, 8771-8778(2017).
[44] Lawanstiend D, Gatemala H, Nootchanat S et al. Microfluidic approach for in situ synthesis of nanoporous silver microstructures as on-chip SERS substrates[J]. Sensors and Actuators B: Chemical, 270, 466-474(2018).
[45] Sivashanmugan K, Squire K, Kraai J A et al. Biological photonic crystal-enhanced plasmonic mesocapsules: approaching single-molecule optofluidic-SERS sensing[J]. Advanced Optical Materials, 7, 1900415(2019).
[46] Zhai Z M, Zhang F Q, Chen X Y et al. Uptake of silver nanoparticles by DHA-treated cancer cells examined by surface-enhanced Raman spectroscopy in a microfluidic chip[J]. Lab on a Chip, 17, 1306-1313(2017).
[47] Rodríguez-Lorenzo L, Garrido-Maestu A, Bhunia A K et al. Gold nanostars for the detection of foodborne pathogens via surface-enhanced Raman scattering combined with microfluidics[J]. ACS Applied Nano Materials, 2, 6081-6086(2019).
[48] Zhao H Z, Xu Y, Wang C Y et al. Design and fabrication of a microfluidic SERS chip with integrated Ag film@nanoAu[J]. RSC Advances, 6, 14105-14111(2016).
[50] D’Apuzzo F, Sengupta R N, Overbay M et al. A generalizable single-chip calibration method for highly quantitative SERS via inkjet dispense[J]. Analytical Chemistry, 92, 1372-1378(2020).
[51] Liu X Q, Yang S N, Yu L et al. Rapid engraving of artificial compound eyes from curved sapphire substrate[J]. Advanced Functional Materials, 29, 1900037(2019).
[52] Ma Z-C, Hu X-Y, Zhang Y L et al. Smart compound eyes enable tunable imaging[J]. Advanced Functional Materials, 29, 1903340(2019).
[53] Wu D, Chen Q D, Niu L G et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on a Chip, 9, 2391-2394(2009).
[54] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).
[55] Zhang Y L, Tian Y, Wang H et al. Dual-3D femtosecond laser nanofabrication enables dynamic actuation[J]. ACS Nano, 13, 4041-4048(2019).
[58] Ma Z C, Zhang Y L, Han B et al. Femtosecond laser direct writing of plasmonic Ag/Pd alloy nanostructures enables flexible integration of robust SERS substrates[J]. Advanced Materials Technologies, 2, 1600270(2017).
[59] Wang H, Zhang Y L, Wang W et al. On-chip laser processing for the development of multifunctional microfluidic chips[J]. Laser & Photonics Reviews, 11, 1600116(2017).
[60] Xia H, Wang J, Tian Y et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization[J]. Advanced Materials, 22, 3204-3207(2010).
[61] Wu D, Wang J N, Wu S Z et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 21, 2927-2932(2011).
[62] Guo L, Hao Y W, Li P L et al. Improved NO2 gas sensing properties of graphene oxide reduced by two-beam-laser interference[J]. Scientific Reports, 8, 4918(2018).
[64] Fang H H, Yang J, Ding R et al. Polarization dependent two-photon properties in an organic crystal[J]. Applied Physics Letters, 97, 101101(2010).
[65] Wang J N, Zhang Y L, Liu Y et al. Recent developments in superhydrophobic graphene and graphene-related materials:from preparation to potential applications[J]. Nanoscale, 7, 7101-7114(2015).
[66] Han D D, Zhang Y L, Ma J N et al. Sunlight-reduced graphene oxides as sensitive moisture sensors for smart device design[J]. Advanced Materials Technologies, 2, 1700045(2017).
[67] Yan Z X, Zhang Y L, Wang W et al. Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference[J]. ACS Applied Materials & Interfaces, 7, 27059-27065(2015).
[68] Huang J A, Zhang Y L, Zhao Y et al. Superhydrophobic SERS chip based on a Ag coated natural taro-leaf[J]. Nanoscale, 8, 11487-11493(2016).
[69] Jiang H B, Zhang Y L, Liu Y et al. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil[J]. Laser & Photonics Reviews, 10, 441-450(2016).
[70] Han B, Zhang Y L, Zhu L et al. Plasmonic-assisted graphene oxide artificial muscles[J]. Advanced Materials, 31, 1806386(2019).
[71] Han B, Zhang Y L, Zhu L et al. Direct laser scribing of AgNPs@RGO biochip as a reusable SERS sensor for DNA detection[J]. Sensors and Actuators B: Chemical, 270, 500-507(2018).
[72] Im H, Lee K, Weissleder R et al. Novel nanosensing technologies for exosome detection and profiling[J]. Lab on a Chip, 17, 2892-2898(2017).
[73] Zhao Y Q, Zhang Y L, Huang J A et al. Plasmonic nanopillar array embedded microfluidic chips: an in situ SERS monitoring platform[J]. Journal of Materials Chemistry A, 3, 6408-6413(2015).
[75] Lim L K, Ng B K, Fu C Y et al. Highly sensitive and scalable AAO-based nano-fibre SERS substrate for sensing application[J]. Nanotechnology, 28, 235302(2017).
[77] Xu X D, Zhao L, Xue Q L et al. Dynamic liquid surface enhanced Raman scattering platform based on soft tubular microfluidics for label-free cell detection[J]. Analytical Chemistry, 91, 7973-7979(2019).
[78] Bai S, Serien D, Hu A M et al. 3D microfluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances[J]. Advanced Functional Materials, 28, 1706262(2018).
[79] Bailey M R, Pentecost A M, Selimovic A et al. Sheath-flow microfluidic approach for combined surface enhanced Raman scattering and electrochemical detection[J]. Analytical Chemistry, 87, 4347-4355(2015).
[80] Guselnikova O, Postnikov P, Trelin A et al. Dual mode chip enantioselective express discrimination of chiral amines via wettability-based mobile application and portable surface-enhanced Raman spectroscopy measurements[J]. ACS Sensors, 4, 1032-1039(2019).
[81] Choi N, Lee J, Ko J et al. Integrated SERS-based microdroplet platform for the automated immunoassay of F1 antigens in yersinia pestis[J]. Analytical Chemistry, 89, 8413-8420(2017).
[82] Liu X, Zheng W, Jiang X. Cell-based assays on microfluidics for drug screening[J]. ACS Sensors, 4, 1465-1475(2019).
[83] Sun D, Cao F H, Cong L L et al. Cellular heterogeneity identified by single-cell alkaline phosphatase (ALP) via a SERRS-microfluidic droplet platform[J]. Lab on a Chip, 19, 335-342(2019).
[84] Fei J, Wu L, Zhang Y et al. Pharmacokinetics-on-a-chip using label-free SERS technique for programmable dual-drug analysis[J]. ACS Sensors, 2, 773-780(2017).
[85] Viehrig M, Thilsted A H, Matteucci M et al. Injection-molded microfluidic device for SERS sensing using embedded Au-capped polymer nanocones[J]. ACS Applied Materials & Interfaces, 10, 37417-37425(2018).
[86] Viehrig M, Rajendran S T, Sanger K et al. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: a method for detection of melamine in milk[J]. Analytical Chemistry, 92, 4317-4325(2020).
[87] Wang Y, Ruan Q Y, Lei Z C et al. Highly sensitive and automated surface enhanced Raman scattering-based immunoassay for H5N1 detection with digital microfluidics[J]. Analytical Chemistry, 90, 5224-5231(2018).
[88] Han B, Gao Y Y, Zhu L et al. In situ integration of SERS sensors for on-chip catalytic reactions[J]. Advanced Materials Technologies, 5, 1900963(2020).
[89] Sun D, Cao F H, Tian Y et al. Label-free detection of multiplexed metabolites at single-cell level via a SERS-microfluidic droplet platform[J]. Analytical Chemistry, 91, 15484-15490(2019).
[90] Willner M R. McMillan K S, Graham D, et al. Surface-enhanced Raman scattering based microfluidics for single-cell analysis[J]. Analytical Chemistry, 90, 12004-12010(2018).
[93] Si Y M, Xu L, Wang N N et al. Target microRNA-responsive DNA hydrogel-based surface-enhanced Raman scattering sensor arrays for microRNA-marked cancer screening[J]. Analytical Chemistry, 92, 2649-2655(2020).
[94] Xing R R, Wen Y R, Dong Y R et al. Dual molecularly imprinted polymer-based plasmonic immunosandwich assay for the specific and sensitive detection of protein biomarkers[J]. Analytical Chemistry, 91, 9993-10000(2019).
[95] Yang K, Zong S F, Zhang Y Z et al. Array-assisted SERS microfluidic chips for highly sensitive and multiplex gas sensing[J]. ACS Applied Materials & Interfaces, 12, 1395-1403(2020).
[98] Xu B B, Zhang R, Liu X Q et al. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring[J]. Chem Commun, 48, 1680-1682(2012).
[99] Han B, Zhang Y L, Chen Q D et al. Carbon-based photothermal actuators[J]. Advanced Functional Materials, 28, 1802235(2018).
[100] Han B, Gao Y Y, Zhang Y L et al. Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robots[J]. Nano Energy, 71, 104578(2020).
[102] Hidi I J, Jahn M, Weber K et al. Lab-on-a-chip-surface enhanced Raman scattering combined with the standard addition method: toward the quantification of nitroxoline in spiked human urine samples[J]. Analytical Chemistry, 88, 9173-9180(2016).
[103] Hidi I J, Jahn M, Pletz M W et al. Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique[J]. The Journal of Physical Chemistry C, 120, 20613-20623(2016).
[104] Song Y, Lin B, Tian T et al. Recent progress in microfluidics-based biosensing[J]. Analytical Chemistry, 91, 388-404(2019).
[105] Wang Z X, Ye S J, Zhang N et al. Triggerable mutually amplified signal probe based SERS-microfluidics platform for the efficient enrichment and quantitative detection of miRNA[J]. Analytical Chemistry, 91, 5043-5050(2019).
[106] Kim S, Kim T G, Lee S H et al. Label-free surface-enhanced Raman spectroscopy biosensor for on-site breast cancer detection using human tears[J]. ACS Applied Materials & Interfaces, 12, 7897-7904(2020).
[107] Kline N D, Tripathi A, Mirsafavi R et al. Optimization of surface-enhanced Raman spectroscopy conditions for implementation into a microfluidic device for drug detection[J]. Analytical Chemistry, 88, 10513-10522(2016).
[109] Park T, Lee S, Seong G H et al. Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study[J]. Lab on a Chip, 5, 437-442(2005).
[110] Sun D, Cao F H, Xu W Q et al. Ultrasensitive and simultaneous detection of two cytokines secreted by single cell in microfluidic droplets via magnetic-field amplified SERS[J]. Analytical Chemistry, 91, 2551-2558(2019).
[112] Bell S E J, Charron G, Cortés E et al. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice[J]. Angewandte Chemie International Edition, 59, 5454-5462(2020).
[113] Jeon J, Choi N, Chen H et al. SERS-based droplet microfluidics for high-throughput gradient analysis[J]. Lab on a Chip, 19, 674-681(2019).
[114] Zhang H H, Zhou F, Liu M et al. Spherical nanoparticle arrays with tunable nanogaps and their hydrophobicity enhanced rapid SERS detection by localized concentration of droplet evaporation[J]. Advanced Materials Interfaces, 2, 1500031(2015).
[116] Ma Z C, Zhang Y L, Han B et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications[J]. Small Methods, 2, 1700413(2018).
[117] Culka A, Košek F, Oren A et al. Detection of carotenoids of halophilic prokaryotes in solid inclusions inside laboratory-grown chloride and sulfate crystals using a portable Raman spectrometer: applications for Mars exploration[J]. FEMS Microbiology Letters, 366, 1-9(2019).
[118] Khristoforova Y A, Bratchenko I A, Myakinin O O et al. Portable spectroscopic system for in vivo skin neoplasms diagnostics by Raman and autofluorescence analysis[J]. Journal of Biophotonics, 12, e201800400(2019).
[119] Li S Y, Xia L, Zhang H J et al. Inline integration of offset MMF-capillary-MMF structure as a portable and compact fiber-optic surface-enhanced Raman scattering microfluidic chip[J]. Applied Optics, 57, 10548-10552(2018).
[120] Liszewska M, Bartosewicz B, Budner B et al. Evaluation of selected SERS substrates for trace detection of explosive materials using portable Raman systems[J]. Vibrational Spectroscopy, 100, 79-85(2019).
[121] Pilot R. SERS detection of food contaminants by means of portable Raman instruments[J]. Journal of Raman Spectroscopy, 49, 954-981(2018).
Get Citation
Copy Citation Text
Chunhe Li, Zhuochen Ma, Xinyu Hu, Lin Zhu, Bing Han, Yonglai Zhang. Preparation and Application of Microfluidic Raman Detection Chip[J]. Chinese Journal of Lasers, 2021, 48(2): 0202010
Category: laser manufacturing
Received: Apr. 22, 2020
Accepted: Jun. 11, 2020
Published Online: Jan. 6, 2021
The Author Email: Zhang Yonglai (yonglaizhang@jlu.edu.cn)