Laser & Optoelectronics Progress, Volume. 56, Issue 2, 020001(2019)

Research Progress and Application of Coherent Wind Lidar

Yanzong Zhou1,2, Chong Wang1,2, Yanping Liu1,2, and Haiyun Xia1,2、*
Author Affiliations
  • 1 School of Earth and Space Science, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 2 Key Laboratory of Geospace Environment, Chinese Academy of Sciences, Hefei, Anhui 230026, China
  • show less
    References(125)

    [2] Quant F, Farmer K R, Tan P V et al. -11-29[2018-05-21]. http: ∥www. freepatentsonline. com/9506869. html.(2016).

    [5] Shangguan M J. Laser remote sensing with 1.5 μm single photon detectors[D]. Hefei: University of Science and Technology of China(2017).

    [7] Zhu J P[M]. Optoelectronic technology foundation(2009).

    [8] Xia H Y. Direct detection Doppler wind lidar based on aerosol backscattered signal with twin-channel Fabry-Perot etalon[D]. Suzhou: Soochow University(2006).

    [13] Woodfield A A, Vaughan J M. Using anairborne CO2 CW laser for free stream airspeed and wind shear measurements [S. l. ]:[S. l. ]. AGARD Flight Test Techniques Series, 18(1984).

    [16] Bilbro J W. DiMarzio C, Fitzjarrald D, et al. Airborne Doppler lidar measurements[J]. Applied Optics, 25, 3952-3960(1986).

    [26] Kane T J, Byvik C E, Kozlovsky W J et al. Coherent laser radar at 1.06 μm using Nd∶YAG lasers[J]. Optics Letters, 12, 239-241(1987).

    [29] Proctor F H, Hamilton D W. Evaluation of fast-time wake vortex prediction models. [C]∥47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, January 5-8, 2009, Orlando, Florida. Virginia: AIAA, 344(2009).

    [31] Prasad N S, Sibell R, Vetorino S et al. An all-fiber, modular, compact wind lidar for wind sensing and wake vortex applications[J]. Proceedings of SPIE, 9465, 94650C(2015).

    [32] Spuler S M, Richter D, Spowart M P et al. Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence[J]. Applied Optics, 50, 842-851(2011).

    [33] Akbulut M, Hwang J, Kimpel F et al. Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection[J]. Proceedings of SPIE, 8037, 80370R(2011).

    [34] Engin D, Mathason B, Stephen M et al. High energy, narrow linewidth 1572 nm Er, Yb-fiber based MOPA for a multi-aperture CO2 trace-gas laser space transmitter[J]. Proceedings of SPIE, 9728, 97282S(2016).

    [35] Kameyama S, Yanagisawa T, Ando T et al. Development of wind sensing coherent Doppler LIDAR at Mitsubishi Electric Corporation-from late 1990s to 2013. [C]∥Proceedings of 17th Coherent Laser Radar Conference, June 17-20, 2013, Barcelona, Spain. Huntsville, Alabama: Universities Space Research Association, 12-13(2013).

    [36] Asaka K, Hirano Y, Morimoto Y et al. Er, Yb∶glass coherent lidar using a microchip laser as a reference optical source[J]. The Review of Laser Engineering, 26, 876-880(1998).

    [37] Yanagisawa T, Asaka K, Hamazu K et al. 11-mJ, 15-Hz single-frequency diode-pumped Q-switched Er, Yb∶ phosphate glass laser[J]. Optics Letters, 26, 1262-1264(2001).

    [38] Asaka K, Yanagisawa T, Hirano Y. 1.5 μm eye-safe coherent lidar system for wind velocity measurement[J]. Proceedings of SPIE, 4153, 321-329(2001).

    [39] Fujiyoshi Y, Yamashita K, Fujiwara C. Visualization of streaks, thermals and waves in the atmospheric boundary layer[J]. Journal of visualization, 9, 359-359(2006).

    [40] Kameyama S, Ando T, Asaka K et al. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing[J]. Applied Optics, 46, 1953-1962(2007).

    [41] Ando T, Kameyama S, Hirano Y. All-fiber coherent Doppler lidar technologies at Mitsubishi Electric Corporation[J]. IOP Conference Series: Earth and Environmental Science, 1, 012011(2008).

    [42] Chan P W, Lee Y F. Application of short-range lidar in wind shear alerting[J]. Journal of Atmospheric and Oceanic Technology, 29, 207-220(2012).

    [43] Inokuchi H, Tanaka H. Nice, France. http:∥icas. org/ICAS_ARCHIVE/ICAS2010/PAPERS/179[2018-05-21]. PDF.(2010).

    [44] Inokuchi H, Endo E, Ando T et al. Development of an airborne wind measurement system[J]. Proceedings of SPIE, 7328, 738205(2009).

    [45] Inokuchi H, Tanaka H, Ando T. Development of an onboard Doppler lidar for flight safety[J]. Journal of Aircraft, 46, 1411-1415(2009).

    [46] Sakimura T, Watanabe Y, Ando T et al. 3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb∶glass planar waveguide for a coherent Doppler LIDAR. [C]∥Proceedings of 17th Coherent Laser Radar Conference, June 17-20, 2013, Barcelona, Spain. Huntsville, Alabama: Universities Space Research Association, 35-39(2013).

    [47] Kameyama S, Sakimura T, Watanabe Y et al. Wind sensing demonstration of more than 30 km measurable range with a 1.5 μm coherent Doppler LIDAR which has the laser amplifier using Er, Yb∶glass planar waveguide[J]. Proceedings of SPIE, 8526, 85260E(2012).

    [48] Inokuchi H, Furuta M. Petersburg, Russia[2018-05-21]. http:∥www. icas. org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0208_paper. pdf.(2014).

    [49] Dolfi-Bouteyre A, Augére B, Besson C et al. 1.5 μm all fiber pulsed lidar for wake vortex monitoring. [C]∥Conference on Lasers and Electro-Optics, May 4-9, 2008, San Jose, California United States. Washington: Optical Society of America, CMQ3(2008).

    [50] Canat G, Lombard L, Durécu A et al. Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm. [C]∥Conference on Lasers and Electro-Optics, May 6-11, 2007, Baltimore, Maryland United States. Washington: Optical Society of America, CTuBB1(2007).

    [51] Dolfi-Bouteyre A, Canat G, Valla M et al. Pulsed 1.5 μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 441-450(2009).

    [52] Dolfi-Bouteyre A, Augere B, Valla M et al[J]. Aircraft wake vortex study and characterization with 1.5 μm fiber Doppler lidar Aerospace Lab, 2009, 1-13.

    [53] Renard W, Goular D, Valla M et al. Beyond 10 km range wind-speed measurement with a 1.5 μm all-fiber laser source. [C]∥CLEO: Applications and Technology, June 8-13, 2014, San Jose, California United States. Washington: Optical Society of America, AW1P, 5(2014).

    [54] Lombard L, Valla M, Planchat C et al. Eyesafe coherent detection wind lidar based on a beam-combined pulsed laser source[J]. Optics Letters, 40, 1030-1033(2015).

    [55] Lombard L, Dolfi-Bouteyre A, Besson C et al. Long range wind lidars based on novel high spectral brilliance all-fibered sources[J]. Proceedings of SPIE, 9645, 96450B(2015).

    [56] Thobois L P, Krishnamurthy R, Loaec S. Wind and EDR measurements with scanning Doppler LIDARs for preparing future weather dependent separation concepts. [C]∥7th AIAA Atmospheric and Space Environments Conference, June 22-26, 2015, Dallas, Texas, USA. Virginia: AIAA, 3317(2015).

    [57] Thobois L, Loaec S, Boquet M et al. Workshop, 2014 [2018-05-21]. http:∥www. wakenet. eu/fileadmin/user_upload/Workshop2014/Presentations/WakeNetEurope_Workshop2014_504_Thobois. pdf.(2014).

    [58] Vrancken P, Wirth M, Rempel D et al. 2018-05-21]. https: ∥elib.dlr.de/67271/1/Seiten_aus_ILRC_25_PROCEEDINGS_VOL_1. pdf.(2010).

    [59] Besson C, Augere B, Canat G et al. New fiber laser for lidar developments in disaster management[J]. Proceedings of SPIE, 9250, 92500H(2014).

    [60] Barbaresco F, Thobois L, Dolfi-Bouteyre A, Paris. [S.l.: s.n.] et al. 81-110[2018-05-21]. http:∥webistem.com/ursi-f2015/output_directory/cd1/data/articles/000033.pdf.(2015).

    [61] Hallermeyer A, Dolfi-Bouteyre A, Valla M et al. Development and assessment of a Wake Vortex characterization algorithm based on a hybrid LIDAR signal processing. [C]∥8th AIAA Atmospheric and Space Environments Conference, June 13-17, 2016, Washington, DC. Virginia: AIAA, 3272(2016).

    [62] Kigle S. Wake identification and characterization of a full scale wind energy converter in complex terrain with scanning Doppler wind Lidar systems München:[D]. Ludwig-Maximilians-Universität München(2017).

    [63] Augros C, Tabary P, Davrinche D et al. Toulouse, France[2018-05-21]. http:∥www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/ATM_014_ext_abs.pdf.(2012).

    [64] Gibert F, Dumas A, Thobois L et al. Boston, USA[2018-05-21]. http:∥bllast.sedoo.fr/workshops/february2016/presentations/FabienGibert_TKE-budget.pdf.(2012).

    [65] Chen Y, An J, Wang X et al. Observation of wind shear during evening transition and an estimation of submicron aerosol concentrations in Beijing using a Doppler wind lidar[J]. Journal of Meteorological Research, 31, 350-362(2017).

    [66] Karlsson C J, Olsson F A, Letalick D et al. All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements[J]. Applied Optics, 39, 3716-3726(2000).

    [67] Harris M, Constant G, Ward C. Continuous-wave bistatic laser Doppler wind sensor[J]. Applied Optics, 40, 1501-1506(2001).

    [68] Jørgensen H E, Mikkelsen T, Mann J et al. Site wind field determination using a CW Doppler LIDAR-comparison with cup anemometers at Risø. [C]∥Special Topic Conference: The Science of Making Torque from Wind, April 19-21, 2004. Delft, Netherlands. [S. l. ]: Delft University of Technology, 261-266(2004).

    [69] Smith D A, Harris M, Coffey A S et al. Wind lidar evaluation at the Danish wind test site in Høvsøre[J]. Wind Energy, 9, 87-93(2006).

    [70] Bingöl F. Adapting a Doppler laser anemometer to wind energy[D]. Lyngby: Technical University of Denmark(2005).

    [71] Pearson G N, Roberts P J, Eacock J R et al. Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications[J]. Applied Optics, 41, 6442-6450(2002).

    [72] Wang H, Barthelmie R J, Crippa P et al. Profiles of wind and turbulence in the coastal atmospheric boundary layer of Lake Erie[J]. Journal of Physics: Conference Series, 524, 012117(2014).

    [73] Gottschall J, Wolken-Möhlmann G, Lange B. About offshore resource assessment with floating lidars with special respect to turbulence and extreme events[J]. Journal of Physics: Conference Series, 555, 012043(2014).

    [75] Pearson G N, Eacock J R. Fiber-based coherent pulsed Doppler lidar for atmospheric monitoring[J]. Proceedings of SPIE, 4484, 51-58(2002).

    [76] Philippov V N, Sahu J K, Codemard C A et al. All-fiber 1.15-mJ pulsed eye-safe optical source[J]. Proceedings of SPIE, 5335, 1-8(2004).

    [77] Pearson G N, Ridley K D, Willetts D V. Long range 3D active imagery with a scanned single element 1.5 μm coherent lidar system[J]. Proceedings of SPIE, 5988, 59880M(2005).

    [78] Collier C G, Davies F, Davies J et al. Helsinki. [S.l.:s.n.], 2008-12-04.(2008).

    [79] Hogan R J. Grant A L M, Illingworth A J, et al. Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar[J]. Quarterly Journal of the Royal Meteorological Society, 135, 635-643(2009).

    [80] Pearson G, Davies F, Collier C. Remote sensing of the tropical rain forest boundary layer using pulsed Doppler lidar[J]. Atmospheric Chemistry and Physics, 10, 5891-5901(2010).

    [81] Westbrook C D, Illingworth A J. O'Connor E J, et al. Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds[J]. Quarterly Journal of the Royal Meteorological Society, 136, 260-276(2010).

    [82] O’Connor E J, Illingworth A J, Brooks I M et al. . A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements[J]. Journal of Atmospheric and Oceanic Technology, 27, 1652-1664(2010).

    [83] Abari C F, Pedersen A T, Mann J. An all-fiber image-reject homodyne coherent Doppler wind lidar[J]. Optics Express, 22, 25880-25894(2014).

    [84] Pedersen A T, Abari C F, Mann J et al. Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar[J]. Journal of Physics: Conference Series, 524, 012004(2014).

    [85] Abari C F, Dellwik E, Mann J. Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar[J]. Atmospheric Measurement Techniques, 8, 4145-4153(2015).

    [86] Abari C F, Chu X, Hardesty R M et al. A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations[J]. Applied Optics, 54, 8999-9009(2015).

    [87] Hu Q, Rodrigo P J, Pedersen C. Remote wind sensing with a CW diode laser lidar beyond the coherence regime[J]. Optics Letters, 39, 4875-4878(2014).

    [88] Rodrigo P J, Pedersen C. Comparative study of the performance of semiconductor laser based coherent Doppler lidars[J]. Proceedings of SPIE, 8241, 824112(2012).

    [89] Li D M, Zheng Y C, Pan J Y et al. Index system of coherence Doppler wind lidar[J]. Optics Technology, 6, 880-884(2010).

    [90] Pan J Y, Qin S Y, Liu G et al. Coherent laser wind measurement radar wind field measurement technology[J]. Infrared and Laser Engineering, 42, 1720-1724(2013).

    [91] Feng Z H, Du G L. Research and verification of coherent Doppler wind lidar[J]. Laser and Infrared, 45, 128-132(2015).

    [92] Feng L T, Guo H Q, Chen Y et al. Experiment of all fiber Doppler liar at 1.55 μm[J]. Infrared and Laser Engineering, 40, 844-847(2011).

    [93] Liu J, Chen W, Zhu X. Development of all-fiber coherent Doppler LIDAR to measure atmosphere wind speed. [C]∥Optical Instrumentation for Energy and Environmental Applications, November 11-14, 2012. Eindhoven Netherlands. Washington: Optical Society of America, ET4D, 1(2012).

    [94] Diao W, Zhang X, Liu J et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers[J]. Chinese Optics Letters, 12, 072801(2014).

    [95] Diao W F, Liu J, Zhu X P et al. Study of all-fiber coherent Doppler lidar wind profile nonlinear least square retrieval method and validation experiment[J]. Chinese Journal of Lasers, 42, 0914003(2015).

    [96] Bu Z, Zhang Y, Chen S et al. Noise modeling by the trend of each range gate for coherent Doppler LIDAR[J]. Optical Engineering, 53, 063109(2014).

    [97] Fan Q, Zhu K Y, Zheng J F et al. Detection performance analysis of all-fiber coherent lidar under different weather types[J]. Chinese Journal of Lasers, 44, 0210003(2017).

    [98] Wu S, Yin J, Liu B et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar[J]. Proceedings of SPIE, 9262, 92620H(2014).

    [99] Zhai X, Wu S, Liu B. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness[J]. Optics Express, 25, A515-A529(2017).

    [100] Wu S, Liu B, Liu J et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar[J]. Optics Express, 24, A762-A780(2016).

    [101] Feng C Z, Wu S H, Liu B Y. Research on wind retrieval method of coherent Doppler lidar and experiment verification[J]. Chinese Journal of Lasers, 45, 0410001(2018).

    [102] Wang C, Xia H, Shangguan M et al. 1.5 μm polarization coherent lidar incorporating time-division multiplexing[J]. Optics Express, 25, 20663-20674(2017).

    [103] Wang C, Xia H, Liu Y et al. Spatial resolution enhancement of coherent Doppler wind lidar using joint time-frequency analysis[J]. Optics Communications, 424, 48-53(2018).

    [104] Henderson S W, Hale C P, Magee J R et al. Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho∶YAG lasers[J]. Optics Letters, 16, 773-775(1991).

    [105] Suni P J M, Henderson S W. 1-mJ/pulse Tm∶YAG laser pumped by a 3-W diode laser[J]. Optics Letters, 16, 817-819(1991).

    [106] Henderson S W. Suni P J M, Hale C P, et al. Coherent laser radar at 2 μm using solid-state lasers[J]. IEEE Transactions on Geoscience and Remote Sensing, 31, 4-15(1993).

    [107] Targ R, Steakley B C, Hawley J G et al. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 μm[J]. Applied Optics, 35, 7117-7127(1996).

    [108] Wulfmeyer V, Randall M, Brewer A et al. 2-μm Doppler lidar transmitter with high frequency stability and low chirp[J]. Optics Letters, 25, 1228-1230(2000).

    [109] Lenschow D H, Wulfmeyer V, Senff C. Measuring second-through fourth-order moments in noisy data[J]. Journal of Atmospheric and Oceanic Technology, 17, 1330-1347(2000).

    [110] Newsom R K, Banta R M. Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99[J]. Journal of the Atmospheric Sciences, 60, 16-33(2003).

    [111] Poulos G S, Blumen W, Fritts D C et al. CASES-99: A comprehensive investigation of the stable nocturnal boundary layer[J]. Bulletin of the American Meteorological Society, 83, 555-581(2002).

    [112] Grund C J, Banta R M, George J L et al. High-resolution Doppler lidar for boundary layer and cloud research[J]. Journal of Atmospheric and Oceanic Technology, 18, 376-393(2001).

    [113] Frehlich R, Hannon S M, Henderson S W. Performance of a 2-μm coherent Doppler lidar for wind measurements[J]. Journal of Atmospheric and Oceanic Technology, 11, 1517-1528(1994).

    [114] Frehlich R, Hannon S M, Henderson S W. Coherent Doppler lidar measurements of winds in the weak signal regime[J]. Applied Optics, 36, 3491-3499(1997).

    [115] Henderson S W, Yuen E H, Hannon S M. Autonomous lidar wind field sensor: design and performance[J]. Proceedings of SPIE, 3757, 18-28(1999).

    [116] Hannon S M. Autonomous infrared Doppler radar: Airport surveillance applications[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 1005-1011(2000).

    [117] Kavaya M J, Beyon J Y, Koch G J et al. The Doppler aerosol wind (DAWN) airborne, wind-profiling coherent-detection Lidar system: overview and preliminary flight results[J]. Journal of Atmospheric and Oceanic Technology, 31, 826-842(2014).

    [118] Yu J, Singh U N, Barnes N P et al. 125-mJ diode-pumped injection-seeded Ho∶Tm∶YLF laser[J]. Optics Letters, 23, 780-782(1998).

    [119] Koch G J, Petros M, Barnes B W et al. Validar: a testbed for advanced 2-micron Doppler lidar[J]. Proceedings of SPIE, 5412, 87-98(2004).

    [120] Li Y C. Study on heterodyne method and key technology for 2-micrometer wind lidar[D]. Harbin: Harbin Institute of Technology(2012).

    [121] Bu Z C, Chen S Y, Zhang Y C et al. Error modeling and analysis on wind speed and direction for 2 μm space based coherent Doppler lidar[J]. Journal of Infrared and Millimeter Waves, 34, 465-470(2015).

    [122] Zhu Z Y, Gao K, Han L et al. Technical analysis of space-based coherent wind lidar[J]. Laser & Optoelectronics Progress, 52, 101201(2015).

    [123] Shun C M, Chan P W. Applications of an infrared Doppler lidar in detection of wind shear[J]. Journal of Atmospheric and Oceanic Technology, 25, 637-655(2008).

    [124] Dolfi-Bouteyre A, Canat G, Valla M et al. Pulsed 1.5-μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 441-450(2009).

    [125] Tucker S C, Senff C J, Weickmann A M et al. Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles[J]. Journal of Atmospheric and Oceanic Technology, 26, 673-688(2009).

    [126] Witschas B, Rahm S, Dörnbrack A et al. Airborne wind lidar measurements of vertical and horizontal winds for the investigation of orographically induced gravity waves[J]. Journal of Atmospheric and Oceanic Technology, 34, 1371-1386(2017).

    Tools

    Get Citation

    Copy Citation Text

    Yanzong Zhou, Chong Wang, Yanping Liu, Haiyun Xia. Research Progress and Application of Coherent Wind Lidar[J]. Laser & Optoelectronics Progress, 2019, 56(2): 020001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 11, 2018

    Accepted: Jul. 12, 2018

    Published Online: Aug. 1, 2019

    The Author Email: Xia Haiyun (hsia@ustc.edu.cn)

    DOI:10.3788/LOP56.020001

    Topics