Laser & Optoelectronics Progress, Volume. 62, Issue 2, 0212004(2025)

Lightweight GCP-YOLOv8s for Insulator Defect Detection

Fuzhen Huang* and Tianci Wang
Author Affiliations
  • College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • show less
    Figures & Tables(16)
    Structure of YOLOv8s network
    Structure of GSConv network
    Structure of C2f network and Bottleneck
    Structure of C2f-Faster network
    PConv working principle and FasterNet structure
    Structure of CF-EMA network
    Feature fusion structure after adding small defect detection layer. (a) Default path of YOLOv8s; (b) after adjusting
    Structure of GCP-YOLOv8s network
    Aerial images of partial insulators. (a) Display of defects; (b) examples of data enhancement; (c) fogging effect under different fog thickness (L: brightness, D: fog thickness)
    Information visualization of insulator defect dataset. (a) Category and quantity; (b) distribution of central points; (c) defect size distribution
    Comparison of mAP@0.5 of GCP-YOLOv8s and YOLOv8s
    Comparison of mAP@0.5 of each model
    Detection effect of YOLOv8s and GCP-YOLOv8s in different backgrounds
    • Table 1. Experimental parameters

      View table

      Table 1. Experimental parameters

      Experimental parameterParameter quantity
      Epoch300
      Batch size8
      Learning rate0.01
      OptimizerSGD
      Momentum0.937
      Weight decay0.0005
      Input size640
    • Table 2. GCP-YOLOv8s ablation experiment

      View table

      Table 2. GCP-YOLOv8s ablation experiment

      ModelGSConvCF-EMAP2

      mAP@

      0.5/%

      AP/%Parameters/106Model Size /106
      ins.def.sel.
      YOLOv8s×××95.898.889.698.911.322.5
      G-YOLOv8s××96.098.889.899.49.820.2
      GC-YOLOv8s×96.899.092.499.16.613.7
      GCP-YOLOv8s97.699.294.399.47.214.7
    • Table 3. Comparative experiment among GCP-YOLOv8s and other algorithms

      View table

      Table 3. Comparative experiment among GCP-YOLOv8s and other algorithms

      ModelmAP@0.5/%Parameters /106Model Size /106FPS
      SSD78.325.651.341
      Faster R-CNN75.772.4144.87
      YOLOv5s93.07.114.6107
      YOLOv7s78.936.574.885
      YOLOv8s95.811.322.5121
      GCP-YOLOv8s97.67.214.796
    Tools

    Get Citation

    Copy Citation Text

    Fuzhen Huang, Tianci Wang. Lightweight GCP-YOLOv8s for Insulator Defect Detection[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0212004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Apr. 22, 2024

    Accepted: Jun. 3, 2024

    Published Online: Dec. 17, 2024

    The Author Email:

    DOI:10.3788/LOP241147

    CSTR:32186.14.LOP241147

    Topics