Journal of Synthetic Crystals, Volume. 51, Issue 9-10, 1673(2022)
Dislocations in 4H Silicon Carbide Single Crystals
[1] [1] EDDY C R Jr, GASKILL D K. Materials science. Silicon carbide as a platform for power electronics[J]. Science, 2009, 324(5933): 1398-1400.
[2] [2] AMANO H, BAINES Y, BEAM E, et al. The 2018 GaN power electronics roadmap[J]. Journal of Physics D: Applied Physics, 2018, 51(16): 163001.
[3] [3] WANG J F, YAN F F, LI Q, et al. Coherent control of nitrogen-vacancy center spins in silicon carbide at room temperature[J]. Physical Review Letters, 2020, 124(22): 223601.
[5] [5] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001.
[6] [6] MUSOLINO M, XU X P, WANG H, et al. Paving the way toward the world's first 200 mm SiC pilot line[J]. Materials Science in Semiconductor Processing, 2021, 135: 106088.
[9] [9] LA VIA F, CAMARDA M, LA MAGNA A. Mechanisms of growth and defect properties of epitaxial SiC[J]. Applied Physics Reviews, 2014, 1(3): 031301.
[10] [10] MANNING I, CHUNG G Y, SANCHEZ E, et al. Influence of dopant concentration on dislocation distributions in 150 mm 4H SiC wafers[J]. Materials Science Forum, 2019, 963: 60-63.
[11] [11] QUAST J, HANSEN D, LOBODA M, et al. High quality 150 mm 4H SiC wafers for power device production[J]. Materials Science Forum, 2015, 821/822/823: 56-59.
[12] [12] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101.
[13] [13] J H D a B D. Introduction to dislocations[M]. 2001.
[14] [14] KIMOTO T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351.
[15] [15] BERKMAN E, LEONARD R T, PAISLEY M J, et al. Defect status in SiC manufacturing[J]. Materials Science Forum, 2009, 615/616/617: 3-6.
[16] [16] LEONARD R T, KHLEBNIKOV Y, POWELL A R, et al. 100 mm 4HN-SiC wafers with zero micropipe density[J]. Materials Science Forum, 2008, 600/601/602/603: 7-10.
[18] [18] GLASS R C, HENSHALL D, TSVETKOV V F, et al. SiC-seeded crystal growth[J].MRS Bulletin, 1997, 22(3): 30-35.
[19] [19] OHTANI N, KATSUNO M, FUJIMOTO T, et al. Surface step model for micropipe formation in SiC[J]. Journal of Crystal Growth, 2001, 226(2/3): 254-260.
[20] [20] LIU C J, PENG T H, WANG S C, et al. Formation mechanism of type2 micropipe defects in 4H-SiC crystals[J]. CrystEngComm, 2013, 15(7): 1307-1313.
[21] [21] SHIOMI H, KINOSHITA H, FURUSHO T, et al. Crystal growth of micropipe free 4H-SiC on 4H-SiC seed and high-purity semi-insulating 6H-SiC[J]. Journal of Crystal Growth, 2006, 292(2): 188-191.
[22] [22] SHINAGAWA N, IZAWA T, MANABE M, et al. Populations and propagation behaviors of pure and mixed threading screw dislocations in physical vapor transport grown 4H-SiC crystals investigated using X-ray topography[J]. Japanese Journal of Applied Physics, 2020, 59(9): 091002.
[23] [23] SUO H, TSUKIMOTO S, ETO K, et al. Evaluation of the increase in threading dislocation during the initial stage of physical vapor transport growth of 4H-SiC[J]. Japanese Journal of Applied Physics, 2018, 57(6): 065501.
[24] [24] HOSHINO N, KAMATA I, TOKUDA Y, et al. Fast growth of n-type 4H-SiC bulk crystal by gas-source method[J]. Journal of Crystal Growth, 2017, 478: 9-16.
[25] [25] KAMATA I, HOSHINO N, TOKUDA Y, et al. Dislocation analysis of 4H-SiC crystals obtained at fast growth rate by the high-temperature gas source method[J]. Materials Science Forum, 2014, 778/779/780: 59-62.
[26] [26] OHTANI N, KATSUNO M, TSUGE H, et al. Dislocation processes during SiC bulk crystal growth[J]. Microelectronic Engineering, 2006, 83(1): 142-145.
[27] [27] SAKWE S A, WELLMANN P J. Influence of growth temperature on the evolution of dislocations during PVT growth of bulk SiC single crystals[J]. Materials Science Forum, 2007, 556/557: 263-266.
[28] [28] DUDLEY M, HUANG X R, HUANG W, et al. The mechanism of micropipe nucleation at inclusions in silicon carbide[J]. Applied Physics Letters, 1999, 75(6): 784-786.
[29] [29] LIU J L, GAO J Q, CHENG J K, et al. Methods for the reduction of the micropipe density in SiC single crystals[J]. Journal of Materials Science, 2007, 42(15): 6148-6152.
[30] [30] NAKAMURA D, GUNJISHIMA I, YAMAGUCHI S, et al. Ultrahigh-quality silicon carbide single crystals[J]. Nature, 2004, 430(7003): 1009-1012.
[31] [31] MA R H, ZHANG H, DUDLEY M, et al. Thermal system design and dislocation reduction for growth of wide band gap crystals[J]. Journal of Crystal Growth, 2003, 258(3/4): 318-330.
[32] [32] SELDER M, KADINSKI L, DURST F, et al. Global modeling of the SiC sublimation growth process: prediction of thermoelastic stress and control of growth conditions[J]. Journal of Crystal Growth, 2001, 226(4): 501-510.
[33] [33] CHEREDNICHENKO D I, DRACHEV R V, KHLEBNIKOV I I, et al. Thermal stress as the major factor of defect generation in SiC during PVT growth[J].MRS Online Proceedings Library, 2003, 742(1): 2181-2186.
[34] [34] GAO B, KAKIMOTO K. Dislocation-density-based modeling of the plastic behavior of 4H-SiC single crystals using the Alexander-Haasen model[J]. Journal of Crystal Growth, 2014, 386: 215-219.
[35] [35] ZHANG M, MCD HOBGOOD H, TREU M, et al. Generation of stacking faults in highly doped n-type 4H-SiC substrates[J]. Materials Science Forum, 2004, 457/458/459/460: 759-762.
[36] [36] MAEDA K, SUZUKI K, FUJITA S, et al. Defects in plastically deformed 6H SiC single crystals studied by transmission electron microscopy[J]. Philosophical Magazine A, 1988, 57(4): 573-592.
[37] [37] SUEMATSU H, SUZUKI T, ISEKI T, et al. Kinking and cracking caused by slip in single crystals of silicon carbide[J]. Journal of the American Ceramic Society, 1991, 74(1): 173-178.
[38] [38] GAO B, KAKIMOTO K. Three-dimensional modeling of basal plane dislocations in 4H-SiC single crystals grown by the physical vapor transport method[J]. Crystal Growth and Design, 2014, 14(3): 1272-1278.
[39] [39] STEINER J, RODER M, NGUYEN B D, et al. Analysis of the basal plane dislocation density and thermomechanical stress during 100 mm PVT growth of 4H-SiC[J]. Materials, 2019, 12(13): 2207.
[40] [40] HERRO Z G, EPELBAUM B M, BICKERMANN M, et al. Effective increase of single-crystalline yield during PVT growth of SiC by tailoring of temperature gradient[J]. Journal of Crystal Growth, 2004, 262(1/2/3/4): 105-112.
[41] [41] WELLMANN P, NEUBAUER G, FAHLBUSCH L, et al. Growth of SiC bulk crystals for application in power electronic devices - process design, 2D and 3D X-ray in situ visualization and advanced doping[J]. Crystal Research and Technology, 2015, 50(1): 2-9.
[42] [42] NAKANO T, SHINAGAWA N, YABU M, et al. Formation and multiplication of basal plane dislocations during physical vapor transport growth of 4H-SiC crystals[J]. Journal of Crystal Growth, 2019, 516: 51-56.
[43] [43] SONODA M, NAKANO T, SHIOURA K, et al. Structural characterization of the growth front of physical vapor transport grown 4H-SiC crystals using X-ray topography[J]. Journal of Crystal Growth, 2018, 499: 24-29.
[44] [44] HEINDL J, DORSCH W, STRUNK H P, et al. Dislocation content of micropipes in SiC[J]. Physical Review Letters, 1998, 80(4): 740-741.
[45] [45] MAXIMENKO S I, PIROUZ P, SUDARSHAN T S. Open core dislocations and surface energy of SiC[J]. Materials Science Forum, 2006, 527/528/529: 439-442.
[46] [46] MAHAJAN S. Origins of micropipes in SiC crystals[J]. Applied Physics Letters, 2002, 80(23): 4321-4323.
[47] [47] GUTKIN M Y, SHEINERMAN A G, ARGUNOVA T S, et al. Ramification of micropipes in SiC crystals[J]. Journal of Applied Physics, 2002, 92(2): 889-894.
[48] [48] KOJIMA K, NISHIZAWA S, KURODA S, et al. Effect of growth condition on micropipe filling of 4H-SiC epitaxial layer[J]. Journal of Crystal Growth, 2005, 275(1/2): e549-e554.
[49] [49] KAMATA I, TSUCHIDA H, JIKIMOTO T, et al. Structural transformation of screw dislocations via thick 4H-SiC epitaxial growth[J]. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 12A): 6496-6500.
[50] [50] NAKAMURA D, KIMOTO T. Transformation of hollow-core screw dislocations: transitional configuration of superscrew dislocations[J]. Japanese Journal of Applied Physics, 2020, 59(9): 095502.
[51] [51] YAMAMOTO Y, HARADA S, SEKI K, et al. High-efficiency conversion of threading screw dislocations in 4H-SiC by solution growth[J]. Applied Physics Express, 2012, 5(11): 115501.
[52] [52] UJIHARA T, KOZAWA S, SEKI K, et al. Conversion mechanism of threading screw dislocation during SiC solution growth[J]. Materials Science Forum, 2012, 717/718/719/720: 351-354.
[53] [53] HARADA S, YAMAMOTO Y, SEKI K, et al. Reduction of threading screw dislocation utilizing defect conversion during solution growth of 4H-SiC[J]. Materials Science Forum, 2013, 740/741/742: 189-192.
[54] [54] DHANARAJ G, CHEN Y, CHEN H, et al. Growth mechanism and dislocation characterization of silicon carbide epitaxial films[J].MRS Online Proceedings Library, 2011, 911(1): 27-32.
[55] [55] DUDLEY M, WU F, WANG H, et al. Stacking faults created by the combined deflection of threading dislocations of Burgers vector c and c+a during the physical vapor transport growth of 4H-SiC[J]. Applied Physics Letters, 2011, 98(23): 232110.
[56] [56] WANG H H, WU F Z, YANG Y, et al. Characterization of defects in SiC substrates and epilayers[J]. ECS Transactions, 2014, 64(7): 145-152.
[57] [57] YAMAMOTO Y, HARADA S, SEKI K, et al. Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method[J]. Applied Physics Express, 2014, 7(6): 065501.
[58] [58] KOMATSU N, MITANI T, HAYASHI Y, et al. Application of defect conversion layer by solution growth for reduction of TSDs in 4H-SiC bulk crystals by PVT growth[J]. Materials Science Forum, 2019, 963: 71-74.
[59] [59] MITANI T, ETO K, MOMOSE K, et al. Massive reduction of threading screw dislocations in 4H-SiC crystals grown by a hybrid method combined with solution growth and physical vapor transport growth on higher off-angle substrates[J]. Applied Physics Express, 2021, 14(8): 085506.
[60] [60] WANG H H, BYRAPA S Y, WU F, et al. Basal plane dislocation multiplication via the hopping frank-read source mechanism and observations of prismatic glide in 4H-SiC[J]. Materials Science Forum, 2012, 717/718/719/720: 327-330.
[61] [61] HARADA S, YAMAMOTO Y, SEKI K, et al. Different behavior of threading edge dislocation conversion during the solution growth of 4H-SiC depending on the Burgers vector[J]. Acta Materialia, 2014, 81: 284-290.
[62] [62] NAKAMURA D, YAMAGUCHI S, GUNJISHIMA I, et al. Topographic study of dislocation structure in hexagonal SiC single crystals with low dislocation density[J]. Journal of Crystal Growth, 2007, 304(1): 57-63.
[63] [63] YAO Y Z, ISHIKAWA Y, SUGAWARA Y, et al. Molten KOH etching with Na2O2 additive for dislocation revelation in 4H-SiC epilayers and substrates[J]. Japanese Journal of Applied Physics, 2011, 50(7R): 075502.
[64] [64] SUN W, SONG Y T, LIU C J, et al. Basal plane dislocation-threading edge dislocation complex dislocations in 6H-SiC single crystals[J]. Materials Express, 2015, 5(1): 63-67.
[65] [65] WANG H, WU F, BYRAPPA S, et al. Basal plane dislocation multiplication via the hopping frank-Read source mechanism in 4H-SiC[J]. Applied Physics Letters, 2012, 100(17): 172105.
[66] [66] CHEN Y, DUDLEY M. Direct determination of dislocation sense of closed-core threading screw dislocations using synchrotron white beam X-ray topography in 4H silicon carbide[J]. Applied Physics Letters, 2007, 91(14): 141918.
[67] [67] SANCHEZ E K, LIU J Q, DE GRAEF M, et al. Nucleation of threading dislocations in sublimation grown silicon carbide[J]. Journal of Applied Physics, 2002, 91(3): 1143-1148.
[68] [68] DENG H, LIU N, ENDO K, et al. Atomic-scale finishing of carbon face of single crystal SiC by combination of thermal oxidation pretreatment and slurry polishing[J]. Applied Surface Science, 2018, 434: 40-48.
[69] [69] HE Y, YUAN Z W, SONG S Y, et al. Investigation on material removal mechanisms in photocatalysis-assisted chemical mechanical polishing of 4H-SiC wafers[J].International Journal of Precision Engineering and Manufacturing, 2021, 22(5): 951-963.
[71] [71] MENG B B, ZHANG F H, LI Z P. Deformation and removal characteristics in nanoscratching of 6H-SiC with Berkovich indenter[J]. Materials Science in Semiconductor Processing, 2015, 31: 160-165.
[72] [72] GOEL S, YAN J W, LUO X C, et al. Incipient plasticity in 4H-SiC during quasistatic nanoindentation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34: 330-337.
[73] [73] ESWAR PRASAD K, RAMESH K T. Hardness and mechanical anisotropy of hexagonal SiC single crystal polytypes[J]. Journal of Alloys and Compounds, 2019, 770: 158-165.
[74] [74] NAWAZ A, MAO W G, LU C, et al. Nano-scale elastic-plastic properties and indentation-induced deformation of single crystal 4H-SiC[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66: 172-180.
[75] [75] ZHU B, ZHAO D, ZHAO H W. A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation[J]. Ceramics International, 2019, 45(4): 5150-5157.
[76] [76] LIU X S, WANG R, ZHANG J R, et al. Doping-dependent nucleation of basal plane dislocations in 4H-SiC[J]. Journal of Physics D: Applied Physics, 2022, 55(33): 334002.
[77] [77] YAN J W, GAI X H, HARADA H. Subsurface damage of single crystalline silicon carbide in nanoindentation tests[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(11): 7808-7811.
[78] [78] IDRISSI H, LANCIN M, REGULA G, et al. Study of dislocation mobility in 4H SiC by X-ray transmission topography, chemical etching and transmission electron microscopy[J]. Materials Science Forum, 2004, 457/458/459/460: 355-358.
[79] [79] LIU X S, ZHANG J R, XU B J, et al. Deformation of 4H-SiC: the role of dopants[J]. Applied Physics Letters, 2022, 120(5): 052105.
[80] [80] HUANG Y C, WANG R, QIAN Y X, et al. Improving the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements[EB/OL]. 2021: arXiv: 2104.10359. https://arxiv.org/abs/2104.10359
[81] [81] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 40103.1.
[82] [82] ELLISON A, SRMAN E, SUNDQVIST B, et al. Mapping of threading screw dislocations in 4H n-type SiC wafers[J]. Materials Science Forum, 2016, 858: 376-379.
[83] [83] BENAMARA M, ZHANG X, SKOWRONSKI M, et al. Structure of the carrot defect in 4H-SiC epitaxial layers[J]. Applied Physics Letters, 2005, 86(2): 021905.
[84] [84] SAKO H, KOBAYASHI K, OHIRA K, et al. Microstructure of stacking fault complex/carrot defects at interface between 4H-SiC epitaxial layers and substrates[J].Journal of Electronic Materials, 2020, 49(9): 5213-5218.
[85] [85] KONISHI K, YAMAMOTO S, NAKATA S, et al. Stacking fault expansion from basal plane dislocations converted into threading edge dislocations in 4H-SiC epilayers under high current stress[J]. Journal of Applied Physics, 2013, 114(1): 014504.
[86] [86] YAMASHITA Y, NAKATA R, NISHIKAWA T, et al. Expansion of Shockley stacking fault observed by scanning electron microscope and partial dislocation motion in 4H-SiC[J]. Journal of Applied Physics, 2018, 123(16): 161580.
[87] [87] YAKIMOV E E, YAKIMOV E B. Radiation-enhanced dislocation glide in 4H-SiC at low temperatures[J]. Journal of Alloys and Compounds, 2020, 837: 155470.
[88] [88] GALECKAS A, LINNROS J, PIROUZ P. Recombination-induced stacking faults: evidence for a general mechanism in hexagonal SiC[J]. Physical Review Letters, 2006, 96(2): 025502.
[89] [89] VANMIL B L, STAHLBUSH R E, MYERS-WARD R L, et al. Basal plane dislocation reduction for 8° off-cut, 4H-SiC using in situ variable temperature growth interruptions[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008, 26(4): 1504.
[90] [90] HORI T, DANNO K, KIMOTO T. Fast homoepitaxial growth of 4H-SiC with low basal-plane dislocation density and low trap concentration by hot-wall chemical vapor deposition[J]. Journal of Crystal Growth, 2007, 306(2): 297-302.
[91] [91] BALACHANDRAN A, SUDARSHAN T S, CHANDRASHEKHAR M V S. Basal plane dislocation free recombination layers on low-doped buffer layer for power devices[J]. Crystal Growth & Design, 2017, 17(4): 1550-1557.
[94] [94] ZHANG Z, MOULTON E, SUDARSHAN T S. Mechanism of eliminating basal plane dislocations in SiC thin films by epitaxy on an etched substrate[J]. Applied Physics Letters, 2006, 89(8): 081910.
[95] [95] BAIERHOFER D, THOMAS B, STAIGER F, et al. Defect reduction in SiC epilayers by different substrate cleaning methods[J]. Materials Science in Semiconductor Processing, 2022, 140: 106414.
[96] [96] DONG L, ZHENG L, LIU X F, et al. Defect revelation and evaluation of 4H silicon carbide by optimized molten KOH etching method[J]. Materials Science Forum, 2013, 740/741/742: 243-246.
[97] [97] LIU X F, YAN G G, SANG L, et al. Defect appearance on 4H-SiC homoepitaxial layers via molten KOH etching[J]. Journal of Crystal Growth, 2020, 531: 125359.
[98] [98] NISHIO J, OTA C, OKADA A, et al. Informative aspects of molten KOH etch pits formed at basal plane dislocations on the surface of 4H-SiC[J]. Physica Status Solidi (a), 2020, 217(16): 2000332.
[99] [99] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46.
[100] [100] KATSUNO M, OHTANI N, TAKAHASHI J, et al. Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation[J]. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 8): 4661-4665.
[101] [101] PAL P, KUMAR S, SINGH S K. Study of eutectic etching process for defects analysis in n type 4H SiC[J]. Defence Science Journal, 2020, 70(5): 515-519.
[102] [102] SONG H Z, RANA T, SUDARSHAN T S. Investigations of defect evolution and basal plane dislocation elimination in CVD epitaxial growth of silicon carbide on eutectic etched epilayers[J]. Journal of Crystal Growth, 2011, 320(1): 95-102.
[103] [103] YANG G, LUO H, LI J, et al. Discrimination of dislocations in 4H-SiC by inclination angles of molten-alkali etched pits[J]. Journal of semiconductors. 2022. Under review
[106] [106] YU J Y, YANG X L, PENG Y, et al. Revelation of the dislocations in the C-face of 4H-SiC substrates using a microwave plasma etching treatment[J]. CrystEngComm, 2021, 23(2): 353-359.
[107] [107] LI J J, LUO H, YANG G, et al. Nitrogen decoration of basal-plane dislocations in 4H-SiC[J]. Physical Review Applied, 2022, 17(5): 054011.
[108] [108] LI J, YANG G, WANG R, et al. Electronic properties of basal plane dislocations of 4H-SiC[J]. Asia-Pacific Conference on Silicon Carbide and Related Materials, 2022.
[109] [109] HUANG J R, CHEN T W, LEE J W, et al. A perspective on leakage current induced by threading dislocations in 4H-SiC Schottky barrier diodes[J]. Materials Letters, 2022, 310: 131506.
[110] [110] FIORENZA P, ALESSANDRINO M S, CARBONE B, et al. Understanding the role of threading dislocations on 4H-SiC MOSFET breakdown under high temperature reverse bias stress[J]. Nanotechnology, 2020, 31(12): 125203.
[111] [111] AEWSKI J, JOCHYM P T, PIEKARZ P, et al. DFT modelling of the edge dislocation in 4H-SiC[J]. Journal of Materials Science, 2019, 54(15): 10737-10745.
[112] [112] CHYNOWETH A G, PEARSON G L. Effect of dislocations on breakdown in silicon p-n junctions[J]. Journal of Applied Physics, 1958, 29(7): 1103-1110.
[113] [113] NEUDECK P G, HUANG W, DUDLEY M. Breakdown degradation associated with elementary screw dislocations in 4H-SiC p+n junction rectifiers[J]. Solid-State Electronics, 1998, 42(12): 2157-2164.
[114] [114] NEUDECK P G, HUANG W, DUDLEY M. Study of bulk and elementary screw dislocation assisted reverse breakdown in low-voltage (<250 V) 4H-SiC p+-n junction diodes. I. DC properties[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 478-484.
[115] [115] BERECHMAN R A, SKOWRONSKI M, SOLOVIEV S, et al. Electrical characterization of 4H-SiC avalanche photodiodes containing threading edge and screw dislocations[J]. Journal of Applied Physics, 2010, 107(11): 114504.
[116] [116] FUJIWARA H, NARUOKA H, KONISHI M, et al. Relationship between threading dislocation and leakage current in 4H-SiC diodes[J]. Applied Physics Letters, 2012, 100(24): 242102.
[117] [117] FUJIWARA H, NARUOKA H, KONISHI M, et al. Impact of surface morphology above threading dislocations on leakage current in 4H-SiC diodes[J]. Applied Physics Letters, 2012, 101(4): 042104.
[118] [118] SKOWRONSKI M, HA S. Degradation of hexagonal silicon-carbide-based bipolar devices[J]. Journal of Applied Physics, 2006, 99(1): 011101.
[119] [119] BU Y, YOSHIMOTO H, WATANABE N, et al. Fabrication of 4H-SiC PiN diodes without bipolar degradation by improved device processes[J]. Journal of Applied Physics, 2017, 122(24): 244504.
[120] [120] OTA C, NISHIO J, OKADA A, et al. Origin and generation process of a triangular single Shockley stacking fault expanding from the surface side in 4H-SiC PIN diodes[J].Journal of Electronic Materials, 2021, 50(11): 6504-6511.
[121] [121] SKOWRONSKI M, LIU J Q, VETTER W M, et al. Recombination-enhanced defect motion in forward-biased 4H-SiC p-n diodes[J]. Journal of Applied Physics, 2002, 92(8): 4699-4704.
[122] [122] NISHIO J, OTA C, IIJIMA R. Structural study of single Shockley stacking faults terminated near substrate/epilayer interface in 4H-SiC[J]. Japanese Journal of Applied Physics, 2022, 61(SC): SC1005.
[123] [123] GAN F, JUN S D, KIMOTO T. Nonradiative recombination at threading dislocations in 4H-SiC epilayers studied by micro-photoluminescence mapping[J]. Journal of Applied Physics, 2011, 110(3): 033525.
[124] [124] BERWIAN P, KAMINZKY D, ROHIRT K, et al. Imaging defect luminescence of 4H-SiC by ultraviolet-photoluminescence[J]. Solid State Phenomena, 2015, 242: 484-489.
[125] [125] STAHLBUSH R E, LIU K X, ZHANG Q, et al. Whole-wafer mapping of dislocations in 4H-SiC epitaxy[J]. Materials Science Forum, 2007, 556/557: 295-298.
[126] [126] TANUMA R, KAMATA I, HADORN J P, et al. Two-photon-excited, three-dimensional photoluminescence imaging and dislocation-line analysis of threading dislocations in 4H-SiC[J]. Journal of Applied Physics, 2018, 124(12): 125703.
[127] [127] LIU K X, ZHANG X, STAHLBUSH R E, et al. Differences in emission spectra of dislocations in 4H-SiC epitaxial layers[J]. Materials Science Forum, 2008, 600/601/602/603: 345-348.
[128] [128] KAWAHARA C, JUN S D, KIMOTO T. Identification of dislocations in 4H-SiC epitaxial layers and substrates using photoluminescence imaging[J]. Japanese Journal of Applied Physics, 2014, 53(2): 020304.
[129] [129] THIERRY-JEBALI N, KAWAHARA C, MIYAZAWA T, et al. Application of UV photoluminescence imaging spectroscopy for stacking faults identification on thick, lightly n-type doped, 4°-off 4H-SiC epilayers[J]. AIP Advances, 2015, 5(3): 037121.
[130] [130] NISHIO J, OKADA A, OTA C, et al. Photoluminescence analysis of individual partial dislocations in 4H-SiC epilayers[J]. Materials Science Forum, 2020, 1004: 376-386.
[131] [131] LUO H, LI J J, YANG G, et al. Electronic and optical properties of threading dislocations in n-type 4H-SiC[J]. ACS Applied Electronic Materials, 2022, 4(4): 1678-1683.
Get Citation
Copy Citation Text
YANG Guang, LIU Xiaoshuang, LI Jiajun, XU Lingbo, CUI Can, PI Xiaodong, YANG Deren, WANG Rong. Dislocations in 4H Silicon Carbide Single Crystals[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1673
Category:
Received: Jul. 1, 2022
Accepted: --
Published Online: Nov. 18, 2022
The Author Email:
CSTR:32186.14.