Chinese Optics, Volume. 15, Issue 2, 373(2022)
High-performance self-powered photodetectors based on the carbon nanomaterial/GaAs vdW heterojunctions
[1] CAI B F, YIN H, HUO T T, et al. Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors[J]. Journal of Materials Chemistry C, 8, 3386-3394(2020).
[2] LEI T, POCHOROVSKI I, BAO ZH N. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method[J]. Accounts of Chemical Research, 50, 1096-1104(2017).
[3] ZHANG J, LIU S Y, NSHIMIYIMANA J P, et al. Observation of van Hove singularities and temperature dependence of electrical characteristics in suspended carbon nanotube Schottky barrier transistors[J]. Nano-Micro Letters, 10, 25(2018).
[4] CAI B F, SU Y J, TAO Z J, et al. Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets[J]. Advanced Optical Materials, 6, 1800791(2018).
[5] [5] YANG L J, WANG SH, ZENG Q SH, et al.. Carbon nanotube photoelectronic photovoltaic devices their applications in infrared detection[J]. Small, 2013, 9(8): 12251236.
[6] HE X W, LÉONARD F, KONO J. Uncooled carbon nanotube photodetectors[J]. Advanced Optical Materials, 3, 989-1011(2015).
[7] MA Z, HAN J, YAO SH, et al. Improving the performance and uniformity of carbon-nanotube-network-based photodiodes via yttrium oxide coating and decoating[J]. ACS Applied Materials & Interfaces, 11, 11736-11742(2019).
[8] LIU Y, WEI N, ZENG Q SH, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Advanced Optical Materials, 4, 238-245(2016).
[9] TUNE D D, FLAVEL B S. Advances in carbon nanotube-silicon heterojunction solar cells[J]. Advanced Energy Materials, 8, 1703241(2018).
[10] ZHOU H X, YANG M, JI CH H, et al. Excellent-performance C60/graphene/SWCNT heterojunction with light-controlled enhancement of photocurrent[J]. ACS Sustainable Chemistry & Engineering, 8, 4276-4283(2020).
[11] GONG Y P, ADHIKARI P, LIU Q F, et al. Designing the interface of carbon nanotube/biomaterials for high-performance ultra-broadband photodetection[J]. ACS Applied Materials & Interfaces, 9, 11016-11024(2017).
[12] LI G H, SUJA M, CHEN M G, et al. Visible-blind UV photodetector based on single-walled carbon nanotube thin film/ZnO vertical heterostructures[J]. ACS Applied Materials & Interfaces, 9, 37094-37104(2017).
[13] SCAGLIOTTI M, SALVATO M, DE CRESCENZI M, et al. Influence of the contact geometry on single-walled carbon nanotube/Si photodetector response[J]. Applied Nanoscience, 8, 1053-1058(2018).
[14] CHEN J X, OUYANG W X, YANG W, et al. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications[J]. Advanced Functional Materials, 30, 1909909(2020).
[15] PERIYANAGOUNDER D, WEI T C, LI T Y, et al. Fast-response, highly air-stable, and water-resistant organic photodetectors based on a single-crystal Pt complex[J]. Advanced Materials, 32, 1904634(2020).
[16] YANG W, CHEN J X, ZHANG Y, et al. Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology[J]. Advanced Functional Materials, 29, 1808182(2019).
[17] SALVATO M, SCAGLIOTTI M, DE CRESCENZI M, et al. Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors[J]. Nanotechnology, 28, 435201(2017).
[18] KIM Y L, JUNG H Y, PARK S, et al. Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics[J]. Nature Photonics, 8, 239-243(2014).
[19] REN ZH H, ZHONG M Z, YANG J H, et al. A polarization-sensitive photodetector based on a AsP/MoS2 heterojunction[J]. Chinese Optics, 14, 135-144(2021).
[20] CHEN H Y, WANG Y F, YAN J, et al. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction[J]. Chinese Optics, 12, 1057-1063(2019).
[21] LIANG CH W, ROTH S. Electrical and optical transport of GaAs/carbon nanotube heterojunctions[J]. Nano Letters, 8, 1809-1812(2008).
[22] LI H, LOKE W K, ZHANG Q, et al. Physical device modeling of carbon nanotube/GaAs photovoltaic cells[J]. Applied Physics Letters, 96, 043501(2010).
[23] BEHNAM A, JOHNSON J, CHOI Y, et al. Metal-semiconductor-metal photodetectors based on single-walled carbon nanotube film–GaAs Schottky contacts[J]. Journal of Applied Physics, 103, 114315(2008).
[24] HUO T T, YIN H, ZHOU D Y, et al. Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions[J]. ACS Sustainable Chemistry & Engineering, 8, 15532-15539(2020).
[25] TAO Z J, HUO T T, YIN H, et al. Self-powered near-infrared photodetector based on single-walled carbon nanotube/graphene/GaAs double heterojunctions[J]. Semiconductor Optoelectronics, 41, 164-168,172(2020).
Get Citation
Copy Citation Text
Ting-ting HUO, Dong-dong ZHANG, Xiang-lei SHI, Yu PAN, Li-jie SUN, Yan-jie SU. High-performance self-powered photodetectors based on the carbon nanomaterial/GaAs vdW heterojunctions[J]. Chinese Optics, 2022, 15(2): 373
Category: Original Article
Received: Jul. 23, 2021
Accepted: Oct. 20, 2021
Published Online: Mar. 28, 2022
The Author Email: Li-jie SUN (sunlijielu@163.com), Yan-jie SU (yanjiesu@sjtu.edu.cn)