Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1412002(2024)

Detection of Static Aberrations in Imaging Optical Path Considering Residual Constraints of Wavefront Sensor

Cibao Zhang1,2,3,4,5, Libo Zhong1,2,3,4、*, and Changhui Rao1,2,3,4、**
Author Affiliations
  • 1Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, Sichuan, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, Sichuan, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5National Key Laboratory of Optical Field Manipulation Science and Technology, Chengdu 610209, Sichuan, China
  • show less
    Figures & Tables(17)
    Optical and mechanical layout of the AO-assisted multi-wavelength simultaneous imaging system of the 1 m new vaccum solar telescope[4]
    Schematic diagram of non-common optical path static aberration offline detection model
    Flow chart of SPGD iterative program detection of aberrations
    Statistics of initial static aberrations in different groups. (a) PV distribution diagram; (b) RMS distribution diagram
    Evaluation function curves for different groups of aberrations in 1500 iterations. (a) [-0.2λ,0.2λ]; (b) [-0.5λ,0.5λ]; (c) [-0.8λ,0.8λ]; (d) [-λ,λ]
    RMS distribution diagram of static aberration detection accuracy
    Detection results of small static aberrations (value range [-0.2λ,0.2λ]). (a) (b) (c)The detection results without wavefront sensor residual information; (d) (e) (f) the detection results using the 30-order residual information from the wavefront sensor; (g) (h) (i) detection results using 50-order residual information from the wavefront sensor
    Detection results of large static aberrations (value range [-λ,λ]). (a)(b)(c) The detection results without wavefront sensor residual information; (d) (e) (f) the detection results using the 30-order residual information from the wavefront sensor; (g) (h) (i) the detection results using 50-order residual information from the wavefront sensor
    The detection accuracy of Zernike mode coefficient for large static aberrations (value range[-0.2λ,0.2λ]) under different signal-to-noise ratios. (a) SNR is 30; (b) SNR is 20; (c) SNR is 10
    The detection accuracy of Zernike mode coefficient for large static aberrations (value range [-λ,λ]) under different signal-to-noise ratios. (a) SNR is 30; (b) SNR is 20; (c) SNR is 10
    Layout of experimental device
    Experimental results of static aberration detection; (a) Initial far-field image; (b) compensation far-field image; (c) iterative convergence curve; (d) mean static aberration detected
    Experimental results of static aberration detection accuracy; (a) Iterative convergence curve; (b) comparison of static aberration detection values; (c) the detection accuracy of static aberrations
    • Table 1. Comparison of Zernike polynomial coefficient detection values,aberration interval [-0.2λ,0.2λ]

      View table

      Table 1. Comparison of Zernike polynomial coefficient detection values,aberration interval [-0.2λ,0.2λ]

      Zernike coefficientAberration /λDetected aberration /λPrecision /λ
      defocus-0.17653-0.17610-0.00044
      y primary astigmatism0.162340.16248-0.00014
      x primary astigmatism-0.19412-0.19379-0.00034
      y primary coma0.146050.14616-0.00011
      x primary coma-0.19224-0.19210-0.00014
      y trefoil0.066190.066020.00017
      x trefoil-0.10001-0.09998-0.00002
      primary spherical0.096100.095590.00050
      x secondary astigmatism0.124050.123820.00023
      y secondary astigmatism0.143670.143550.00012
      x tetrafoil-0.13609-0.136410.00032
      y tetrafoil-0.17770-0.178190.00049
    • Table 2. Comparison of Zernike polynomial coefficient detection values,aberration interval [-0.5λ,0.5λ]

      View table

      Table 2. Comparison of Zernike polynomial coefficient detection values,aberration interval [-0.5λ,0.5λ]

      Zernike coefficientAberration /λDetected aberration /λPrecision /λ
      defocus0.306580.30711-0.00054
      y primary astigmatism-0.36375-0.364380.00063
      x primary astigmatism0.124700.12510-0.00040
      y primary coma0.374710.37558-0.00088
      x primary coma-0.25945-0.259630.00018
      y trefoil0.319500.319100.00039
      x trefoil-0.27718-0.27659-0.00059
      primary spherical0.035910.03592-0.00002
      x secondary astigmatism-0.31418-0.314290.00011
      y secondary astigmatism-0.29790-0.298210.00031
      x tetrafoil0.454940.454530.00041
      y tetrafoil-0.22197-0.221970.00000
    • Table 3. Comparison of Zernike polynomial coefficient detection values,aberration interval [-0.8λ,0.8λ]

      View table

      Table 3. Comparison of Zernike polynomial coefficient detection values,aberration interval [-0.8λ,0.8λ]

      Zernike coefficientAberration /λDetected aberration /λPrecision /λ
      defocus0.457480.45840-0.00091
      y primary astigmatism-0.57025-0.570320.00007
      x primary astigmatism0.619360.619320.00004
      y primary coma-0.22596-0.226070.00011
      x primary coma-0.76120-0.761560.00036
      y trefoil0.181560.18171-0.00015
      x trefoil-0.73635-0.73589-0.00047
      primary spherical0.197570.19793-0.00036
      x secondary astigmatism-0.11349-0.113660.00017
      y secondary astigmatism0.659750.659710.00004
      x tetrafoil-0.62399-0.624050.00006
      y tetrafoil-0.34237-0.34209-0.00029
    • Table 4. Comparison of Zernike polynomial coefficient detection values,aberration interval [-λ,λ]

      View table

      Table 4. Comparison of Zernike polynomial coefficient detection values,aberration interval [-λ,λ]

      Zernike coefficientAberration /λDetected aberration /λPrecision /λ
      defocus0.929660.93166-0.00200
      y primary astigmatism0.528750.53038-0.00163
      x primary astigmatism0.451540.450940.00059
      y primary coma-0.15062-0.150970.00035
      x primary coma0.641590.641210.00038
      y trefoil-0.36958-0.36919-0.00039
      x trefoil-0.50387-0.50348-0.00040
      primary spherical0.789110.79012-0.00101
      x secondary astigmatism0.445080.444820.00026
      y secondary astigmatism0.392570.39295-0.00038
      x tetrafoil-0.86293-0.863940.00100
      y tetrafoil-0.94342-0.944070.00065
    Tools

    Get Citation

    Copy Citation Text

    Cibao Zhang, Libo Zhong, Changhui Rao. Detection of Static Aberrations in Imaging Optical Path Considering Residual Constraints of Wavefront Sensor[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1412002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Sep. 19, 2023

    Accepted: Nov. 27, 2023

    Published Online: Jul. 4, 2024

    The Author Email: Libo Zhong (chrao@ioe.ac.cn), Changhui Rao (zhonglibo@ioe.ac.cn)

    DOI:10.3788/LOP232155

    CSTR:32186.14.LOP232155

    Topics