Acta Optica Sinica, Volume. 43, Issue 8, 0822004(2023)
Advances in Tunable Electromagnetic Metasurfaces
[1] Soukoulis C M, Linden S, PhysicsWegener M. Negative refractive index at optical wavelengths[J]. Science, 315, 47-49(2007).
[2] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).
[3] Valentine J, Zhang S, Zentgraf T et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 455, 376-379(2008).
[4] Cai W S, Chettiar U K, Kildishev A V et al. Optical cloaking with metamaterials[J]. Nature Photonics, 1, 224-227(2007).
[5] Alù A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings[J]. Physical Review E, 72, 016623(2005).
[6] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).
[7] Ni X J, Wong Z J, Mrejen M et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 349, 1310-1314(2015).
[8] Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nature Materials, 7, 435-441(2008).
[9] Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 308, 534-537(2005).
[10] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000).
[11] Gao X, Singh L, Yang W L et al. Bandwidth broadening of a linear polarization converter by near-field metasurface coupling[J]. Scientific Reports, 7, 1-8(2017).
[12] Li J, Zheng C L, Li J T et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface[J]. Photonics Research, 9, 1939-1947(2021).
[13] Li Z C, Liu W W, Cheng H et al. Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface[J]. Scientific Reports, 5, 1-9(2016).
[14] Yue Z, Li J T, Zheng C L et al. Manipulation of polarization conversion and multiplexing via all-silicon phase-modulated metasurfaces[J]. Chinese Optics Letters, 20, 043601(2022).
[15] Xu Q, Su X Q, Zhang X Q et al. Mechanically reprogrammable Pancharatnam-Berry metasurface for microwaves[J]. Advanced Photonics, 4, 016002(2022).
[16] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 4, 1-6(2013).
[17] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 1-8(2013).
[18] Zheng G X, Zhou N, Deng L G et al. Full-space metasurface holograms in the visible range[J]. Optics Express, 29, 2920-2930(2021).
[19] Meng Y, Chen Y Z, Lu L H et al. Optical meta-waveguides for integrated photonics and beyond[J]. Light: Science & Applications, 10, 1-44(2021).
[20] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[21] Cui T, Bai B F, Sun H B. Tunable metasurfaces based on active materials[J]. Advanced Functional Materials, 29, 1806692(2019).
[22] Balci O, Kakenov N, Karademir E et al. Electrically switchable metadevices via graphene[J]. Science Advances, 4, eaao1749(2018).
[23] Liu P Q, Luxmoore I J, Mikhailov S A et al. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons[J]. Nature Communications, 6, 1-7(2015).
[24] Yao Y, Kats M A, Genevet P et al. Broad electrical tuning of graphene-loaded plasmonic antennas[J]. Nano Letters, 13, 1257-1264(2013).
[25] Kim J, Son H, Cho D J et al. Electrical control of optical plasmon resonance with graphene[J]. Nano Letters, 12, 5598-5602(2012).
[26] Yildirim D U, Ghobadi A, Soydan M C et al. Disordered and densely packed ITO nanorods as an excellent lithography-free optical solar reflector metasurface[J]. ACS Photonics, 6, 1812-1822(2019).
[27] Chu C H, Tseng M L, Chen J et al. Active dielectric metasurface based on phase-change medium[J]. Laser & Photonics Reviews, 10, 986-994(2016).
[28] Zhang Y F, Fowler C, Liang J H et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J]. Nature Nanotechnology, 16, 661-666(2021).
[29] Zou L F, Cryan M, Klemm M. Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects[J]. Optics Express, 22, 24142-24148(2014).
[30] Su H, Wang H, Zhao H et al. Liquid-crystal-based electrically tuned electromagnetically induced transparency metasurface switch[J]. Scientific Reports, 7, 1-7(2017).
[31] Buchnev O, Podoliak N, Kaczmarek M et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch[J]. Advanced Optical Materials, 3, 674-679(2015).
[32] Komar A, Paniagua-Domínguez R, Miroshnichenko A et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 5, 1742-1748(2018).
[33] Li S Q, Xu X W, Maruthiyodan Veetil R et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 364, 1087-1090(2019).
[34] Kim W Y, Kim H D, Kim T T et al. Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations[J]. Nature Communications, 7, 1-6(2016).
[35] Aksyuk V A, Pardo F, Carr D et al. Beam-steering micromirrors for large optical cross-connects[J]. Journal of Lightwave Technology, 21, 634-642(2003).
[36] Meng C, Thrane P C V, Ding F et al. Dynamic piezoelectric MEMS-based optical metasurfaces[J]. Science Advances, 7, eabg5639(2021).
[37] Roy T, Zhang S Y, Jung I W et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 3, 021302(2018).
[38] Wang Y M, Zhou G Y, Zhang X S et al. 2D broadband beamsteering with large-scale MEMS optical phased array[J]. Optica, 6, 557-562(2019).
[39] Xu Z L, Yu S B, Liu J J et al. A tunable zig-zag reflective elastic metasurface[J]. Crystals, 12, 1170(2022).
[40] Sautter J, Staude I, Decker M et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano, 9, 4308-4315(2015).
[41] Lee K M, Tondiglia V P, McConney M E et al. Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals[J]. ACS Photonics, 1, 1033-1041(2014).
[42] Ji Y Y, Fan F, Chen M et al. Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice[J]. Optics Express, 25, 11405-11413(2017).
[43] Wang J, Tian H, Wang Y et al. Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial[J]. Optics Express, 26, 5769-5776(2018).
[44] Chen K P, Ye S C, Yang C Y et al. Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals[J]. Optics Express, 24, 16815-16821(2016).
[45] Kang B, Woo J H, Choi E et al. Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure[J]. Optics Express, 18, 16492-16498(2010).
[46] Cheng H C, Kuo C Y, Hung Y J et al. Liquid-crystal active tamm-plasmon devices[J]. Physical Review Applied, 9, 064034(2018).
[47] Kossyrev P A, Yin A J, Cloutier S G et al. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix[J]. Nano Letters, 5, 1978-1981(2005).
[48] Decker M, Kremers C, Minovich A et al. Electro-optical switching by liquid-crystal controlled metasurfaces[J]. Optics Express, 21, 8879-8885(2013).
[49] Khoo I C. Nonlinear optics, active plasmonics and metamaterials with liquid crystals[J]. Progress in Quantum Electronics, 38, 77-117(2014).
[50] Ma L L, Hu W, Zheng Z G et al. Light-activated liquid crystalline hierarchical architecture toward photonics[J]. Advanced Optical Materials, 7, 1900393(2019).
[51] Berini P. Optical beam steering using tunable metasurfaces[J]. ACS Photonics, 9, 2204-2218(2022).
[52] Yang H N, Robertson B, Wilkinson P et al. Small phase pattern 2D beam steering and a single LCOS design of 40 1×12 stacked wavelength selective switches[J]. Optics Express, 24, 12240-12253(2016).
[53] Zhang C, Jing J X, Wu Y K et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response[J]. ACS Nano, 14, 1418-1426(2020).
[54] Shen Y C, Shen Z X, Wang Y Y et al. Electrically tunable terahertz focusing modulator enabled by liquid crystal integrated dielectric metasurface[J]. Crystals, 11, 514(2021).
[55] Bosch M, Shcherbakov M R, Won K et al. Electrically actuated varifocal lens based on liquid- crystal-embedded dielectric metasurfaces[J]. Nano Letters, 21, 3849-3856(2021).
[56] Buchnev O, Ou J Y, Kaczmarek M et al. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell[J]. Optics Express, 21, 1633-1638(2013).
[57] Shrekenhamer D, Chen W C, Padilla W J. Liquid crystal tunable metamaterial absorber[J]. Physical Review Letters, 110, 177403(2013).
[58] Xie Z W, Yang J H, Vashistha V et al. Liquid-crystal tunable color filters based on aluminum metasurfaces[J]. Optics Express, 25, 30764-30770(2017).
[59] Zhao Q, Kang L, Du B et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals[J]. Applied Physics Letters, 90, 011112(2007).
[60] Wang R S, He S S, Chen S Z et al. Electrically driven generation of arbitrary vector vortex beams on the hybrid-order Poincaré sphere[J]. Optics Letters, 43, 3570-3573(2018).
[61] Badloe T, Kim J, Kim I et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks[J]. Light: Science & Applications, 11, 1-11(2022).
[62] McManamon P F, Bos P J, Escuti M J et al. A review of phased array steering for narrow-band electrooptical systems[J]. Proceedings of the IEEE, 97, 1078-1096(2009).
[63] Hamann H F, O’Boyle M, Martin Y C et al. Ultra-high-density phase-change storage and memory[J]. Nature Materials, 5, 383-387(2006).
[64] Chang C M, Chu C H, Tseng M L et al. Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films[J]. Optics Express, 19, 9492-9504(2011).
[65] Pandian R, Kooi B J, Palasantzas G et al. Nanoscale electrolytic switching in phase-change chalcogenide films[J]. Advanced Materials, 19, 4431-4437(2007).
[66] Loke D, Lee T H, Wang W J et al. Breaking the speed limits of phase-change memory[J]. Science, 336, 1566-1569(2012).
[67] Raoux S. Phase change materials[J]. Annual Review of Materials Research, 39, 25-48(2009).
[68] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage[J]. Nature Materials, 6, 1004(2007).
[69] Xiong F, Liao A D, Estrada D et al. Low-power switching of phase-change materials with carbon nanotube electrodes[J]. Science, 332, 568-570(2011).
[70] Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications[J]. Nature Photonics, 11, 465-476(2017).
[71] Yamada N, Ohno E, Akahira N et al. High speed overwritable phase change optical disk material[J]. Japanese Journal of Applied Physics, 26, 61(1987).
[72] Yamada N, Ohno E, Nishiuchi K et al. Rapid‐phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory[J]. Journal of Applied Physics, 69, 2849-2856(1991).
[73] Terao M, Morikawa T, Ohta T. Electrical phase-change memory: fundamentals and state of the art[J]. Japanese Journal of Applied Physics, 48, 080001(2009).
[74] Gholipour B, Zhang J F, MacDonald K F et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch[J]. Advanced Materials, 25, 3050-3054(2013).
[75] Jeong Y G, Bahk Y M, Kim D S. Dynamic terahertz plasmonics enabled by phase-change materials[J]. Advanced Optical Materials, 8, 1900548(2020).
[76] Sámson Z L, MacDonald K F, De Angelis F et al. Metamaterial electro-optic switch of nanoscale thickness[J]. Applied Physics Letters, 96, 143105(2010).
[77] Tittl A, Michel A K U, Schäferling M et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability[J]. Advanced Materials, 27, 4597-4603(2015).
[78] Zhu M L, Abdollahramezani S, Li C T et al. Dynamically tunable second-harmonic generation using hybrid nanostructures incorporating phase-change chalcogenides[J]. Nanophotonics, 11, 2727-2735(2022).
[79] Karvounis A, Gholipour B, MacDonald K F et al. All-dielectric phase-change reconfigurable metasurface[J]. Applied Physics Letters, 109, 051103(2016).
[80] de Galarreta C R, Sinev I, Alexeev A M et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces[J]. Optica, 7, 476-484(2020).
[81] Liu M K, Hwang H Y, Tao H et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 487, 345-348(2012).
[82] Wang T Y, Torres D, Fernández F E et al. Maximizing the performance of photothermal actuators by combining smart materials with supplementary advantages[J]. Science Advances, 3, e1602697(2017).
[83] Ma H, Hou J W, Wang X W et al. Flexible, all-inorganic actuators based on vanadium dioxide and carbon nanotube bimorphs[J]. Nano Letters, 17, 421-428(2017).
[84] Cavalleri A, Dekorsy T, Chong H H W et al. Evidence for a structurally-driven insulator-to-metal transition in VO2: a view from the ultrafast timescale[J]. Physical Review B, 70, 161102(2004).
[85] Goldflam M D, Liu M K, Chapler B C et al. Voltage switching of a VO2 memory metasurface using ionic gel[J]. Applied Physics Letters, 105, 041117(2014).
[86] Hashemi M R M, Yang S H, Wang T Y et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces[J]. Scientific Reports, 6, 1-8(2016).
[87] Ge J H, Zhang Y Q, Dong H X et al. Nanolayered VO2-based switchable terahertz metasurfaces as near-perfect absorbers and antireflection coatings[J]. ACS Applied Nano Materials, 5, 5569-5577(2022).
[88] Dicken M J, Aydin K, Pryce I M et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition[J]. Optics Express, 17, 18330-18339(2009).
[89] Kats M A, Sharma D, Lin J et al. Ultra-thin perfect absorber employing a tunable phase change material[J]. Applied Physics Letters, 101, 221101(2012).
[90] Kats M A, Blanchard R, Genevet P et al. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material[J]. Optics Letters, 38, 368-370(2013).
[91] Zhu Z H, Evans P G, Haglund R F, et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials[J]. Nano Letters, 17, 4881-4885(2017).
[92] Shu F Z, Yu F F, Peng R W et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide[J]. Advanced Optical Materials, 6, 1700939(2018).
[93] Ou J Y, Plum E, Jiang L D et al. Reconfigurable photonic metamaterials[J]. Nano Letters, 11, 2142-2144(2011).
[94] Cao L Y, Yang Z C, Xu Y L et al. Pillared elastic metasurface with constructive interference for flexural wave manipulation[J]. Mechanical Systems and Signal Processing, 146, 107035(2021).
[95] Gutruf P, Zou C J, Withayachumnankul W et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies[J]. ACS Nano, 10, 133-141(2016).
[96] Yoo D, Johnson T W, Cherukulappurath S et al. Template-stripped tunable plasmonic devices on stretchable and rollable substrates[J]. ACS Nano, 9, 10647-10654(2015).
[97] Kim Y, Yeom B, Arteaga O et al. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale[J]. Nature Materials, 15, 461-468(2016).
[98] Song S C, Ma X L, Pu M B et al. Actively tunable structural color rendering with tensile substrate[J]. Advanced Optical Materials, 5, 1600829(2017).
[99] Tseng M L, Yang J, Semmlinger M et al. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response[J]. Nano Letters, 17, 6034-6039(2017).
[100] Kamali S M, Arbabi E, Arbabi A et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser & Photonics Reviews, 10, 1002-1008(2016).
[101] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 16, 2818-2823(2016).
[102] Huang M C Y, Zhou Y, Chang-Hasnain C J. A nanoelectromechanical tunable laser[J]. Nature Photonics, 2, 180-184(2008).
[103] Qiao P F, Li K, Cook K T et al. MEMS-tunable VCSELs using 2D high-contrast gratings[J]. Optics Letters, 42, 823-826(2017).
[104] Yoo B W, Megens M, Sun T B et al. A 32×32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors[J]. Optics Express, 22, 19029-19039(2014).
[105] Yoo B W, Megens M, Chan T et al. Optical phased array using high contrast gratings for two dimensional beamforming and beam steering[J]. Optics Express, 21, 12238-12248(2013).
[106] Zhao X G, Schalch J, Zhang J D et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies[J]. Optica, 5, 303-310(2018).
[107] Arbabi E, Arbabi A, Kamali S M et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 9, 1-9(2018).
[108] Han Z Y, Colburn S, Majumdar A et al. MEMS-actuated metasurface Alvarez lens[J]. Microsystems & Nanoengineering, 6, 1-11(2020).
[109] Zhu W M, Liu A Q, Bourouina T et al. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy[J]. Nature Communications, 3, 1-6(2012).
[110] Lin Y S, Lee C K. Tuning characteristics of mirrorlike T-shape terahertz metamaterial using out-of-plane actuated cantilevers[J]. Applied Physics Letters, 104, 251914(2014).
[111] Meng C, Thrane P C V, Ding F et al. Full-range birefringence control with piezoelectric MEMS-based metasurfaces[J]. Nature Communications, 13, 1-7(2022).
[112] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[113] Feng Y, Liu H, Chen C et al. Broadband terahertz metamaterial absorber based on patterned graphene[J]. Acta Photonica Sinica, 51, 0923001(2022).
[114] Ju L, Geng B S, Horng J et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 6, 630-634(2011).
[115] Liu P Q, Valmorra F, Maissen C et al. Electrically tunable graphene anti-dot array terahertz plasmonic crystals exhibiting multi-band resonances[J]. Optica, 2, 135-140(2015).
[116] Gao W L, Shu J, Reichel K et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J]. Nano Letters, 14, 1242-1248(2014).
[117] Zheludev N I, Plum E. Reconfigurable nanomechanical photonic metamaterials[J]. Nature Nanotechnology, 11, 16-22(2016).
[118] Cencillo-Abad P, Ou J Y, Plum E et al. Electro-mechanical light modulator based on controlling the interaction of light with a metasurface[J]. Scientific Reports, 7, 1-7(2017).
[119] She A L, Zhang S Y, Shian S et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 4, eaap9957(2018).
[120] Luo X H, Dong S Y, Wang Z S et al. Research progress of metasurface-based VR/AR display technology[J]. Laser & Optoelectronics Progress, 59, 2011002(2022).
[121] Liao Q M, Yang J Y, Wang Y T et al. Augmented reality technology based on micro-and nano-optical elements[J]. Laser & Optoelectronics Progress, 59, 2011003(2022).
[122] Li Y Y, Zhang C, Yang N et al. Research progress on application of metasurface concept in augmented reality near-eye displays[J]. Laser & Optoelectronics Progress, 59, 2011005(2022).
[123] Fu X J, Shi L, Yang J et al. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces[J]. ACS Applied Materials & Interfaces, 14, 22287-22294(2022).
[124] Deng G S, Hu H L, Mo H S et al. Liquid crystal-based wide-angle metasurface absorber with large frequency tunability and low voltage[J]. Optics Express, 30, 22550-22561(2022).
[125] Nauman M, Yan J S, de Ceglia D et al. Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces[J]. Nature Communications, 12, 1-11(2021).
[126] Baxter J, Pérez-Casanova A, Cortes-Herrera L et al. Dynamic nanophotonics in epsilon-near-zero conductive oxide films and metasurfaces: a quantitative, nonlinear, computational model[J]. Advanced Photonics Research, 4, 2200280(2023).
[127] Gioti M, Arvanitidis J, Christofilos D et al. Plasmonic and phononic properties of epitaxial conductive transition metal nitrides[J]. Journal of Optics, 22, 084001(2020).
[128] Park J, Kim S J, Sorger V J et al. Electrically tunable metasurface by using InAs in a metal-insulator-metal configuration[J]. Nanophotonics, 11, 1117-1126(2022).
[129] Hong Q L, Xu W, Zhang J F et al. Optical activity in monolayer black phosphorus due to extrinsic chirality[J]. Optics Letters, 44, 1774-1777(2019).
[130] Li N X, Xu Z J, Dong Y et al. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab[J]. Nanophotonics, 9, 3071-3087(2020).
[131] Nall J R, Lathrop J W. Photolithographic fabrication techniques for transistors which are an integral part of a printed circuit[C], 117(2005).
[132] Li N X, Yuan H Y, Xu L F et al. Radiation enhancement by graphene oxide on microelectromechanical system emitters for highly selective gas sensing[J]. ACS Sensors, 4, 2746-2753(2019).
[133] Tong J C, Zhou W, Qu Y et al. Surface plasmon induced direct detection of long wavelength photons[J]. Nature Communications, 8, 1-9(2017).
[134] Sell D, Yang J J, Doshay S et al. Visible light metasurfaces based on single-crystal silicon[J]. ACS Photonics, 3, 1919-1925(2016).
[135] Phan T, Sell D, Wang E W et al. High-efficiency, large-area, topology-optimized metasurfaces[J]. Light: Science & Applications, 8, 1-9(2019).
[136] Piggott A Y, Lu J, Lagoudakis K G et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer[J]. Nature Photonics, 9, 374-377(2015).
[137] Yang J J, Fan J A. Topology-optimized metasurfaces: impact of initial geometric layout[J]. Optics Letters, 42, 3161-3164(2017).
[138] Jafar-Zanjani S, Inampudi S, Mosallaei H. Adaptive genetic algorithm for optical metasurfaces design[J]. Scientific Reports, 8, 1-16(2018).
[139] Zhu D Z, Whiting E B, Campbell S D et al. Optimal high efficiency 3D plasmonic metasurface elements revealed by lazy ants[J]. ACS Photonics, 6, 2741-2748(2019).
[140] Lalbakhsh A, Afzal M U, Esselle K P. Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna[J]. IEEE Antennas and Wireless Propagation Letters, 16, 912-915(2017).
[141] Su J X, Lu Y, Liu J Y et al. A novel checkerboard metasurface based on optimized multielement phase cancellation for superwideband RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 66, 7091-7099(2018).
[142] Sieber P E, Werner D H. Infrared broadband quarter-wave and half-wave plates synthesized from anisotropic Bézier metasurfaces[J]. Optics Express, 22, 32371-32383(2014).
[143] Elsawy M M R, Lanteri S, Duvigneau R et al. Global optimization of metasurface designs using statistical learning methods[J]. Scientific Reports, 9, 17918(2019).
[144] Seada H, Deb K. A unified evolutionary optimization procedure for single, multiple, and many objectives[J]. IEEE Transactions on Evolutionary Computation, 20, 358-369(2016).
[145] Hadka D, Reed P. Borg: an auto-adaptive many-objective evolutionary computing framework[J]. Evolutionary Computation, 21, 231-259(2013).
[146] Malkiel I, Mrejen M, Nagler A et al. Plasmonic nanostructure design and characterization via deep learning[J]. Light: Science & Applications, 7, 1-8(2018).
[147] Nadell C C, Huang B H, Malof J M et al. Deep learning for accelerated all-dielectric metasurface design[J]. Optics Express, 27, 27523-27535(2019).
[148] Jiang J Q, Fan J A. Global optimization of dielectric metasurfaces using a physics-driven neural network[J]. Nano Letters, 19, 5366-5372(2019).
[149] An S S, Fowler C, Zheng B W et al. A deep learning approach for objective-driven all-dielectric metasurface design[J]. ACS Photonics, 6, 3196-3207(2019).
[150] Sajedian I, Badloe T, Rho J. Optimisation of colour generation from dielectric nanostructures using reinforcement learning[J]. Optics Express, 27, 5874-5883(2019).
[151] Inampudi S, Mosallaei H. Neural network based design of metagratings[J]. Applied Physics Letters, 112, 241102(2018).
[152] Liu Z C, Zhu D Y, Rodrigues S P et al. Generative model for the inverse design of metasurfaces[J]. Nano Letters, 18, 6570-6576(2018).
[153] An S S, Zheng B W, Tang H et al. Multifunctional metasurface design with a generative adversarial network[J]. Advanced Optical Materials, 9, 2001433(2021).
[154] Jiang J Q, Sell D, Hoyer S et al. Free-form diffractive metagrating design based on generative adversarial networks[J]. ACS Nano, 13, 8872-8878(2019).
Get Citation
Copy Citation Text
Haotian Zheng, Song Zhang, Ting Xu. Advances in Tunable Electromagnetic Metasurfaces[J]. Acta Optica Sinica, 2023, 43(8): 0822004
Category: Optical Design and Fabrication
Received: Dec. 5, 2022
Accepted: Mar. 13, 2023
Published Online: Apr. 6, 2023
The Author Email: Ting Xu (xuting@nju.edu.cn)