Acta Optica Sinica, Volume. 43, Issue 8, 0822004(2023)

Advances in Tunable Electromagnetic Metasurfaces

Haotian Zheng, Song Zhang, and Ting Xu*
Author Affiliations
  • College of Engineering and Applied Sciences, Nanjing University, Nanjing 210033, Jiangsu, China
  • show less
    Figures & Tables(12)
    Schematic of the generalized Snell's law[20]. (a) Schematic of Fermat principle; (b) schematic of wavefront shaping of metasurface
    Schematic of molecular arrangement for three typical LCs[50]. (a) Cholesteric LC; (b) smectic LC; (c) nematic LC
    LC based tunable metasurface for beam steering and zoom lens. (a) LC based metasurface for beam steering[33]; (b) LC based tunable bifocal lens[54]; (c) LC based metalens with a continuously tunable focal length[55]
    LC-plasmon hybrid device. (a) Electrically tuned dynamic plasma color filter[58]; (b) a hexagonal gold nanodot array in a LC matrix[47]; (c) LC-based electrically tunable negative permeability metasurface[59]; (d) optically controlled LC-based metasurface switch[45]
    All dielectric LC-based metasurface. (a) Transmission modulation by heating[40]; (b) thermally induced beam deflection[32]; (c) vector vortex beam generator[60]; (d) electrically tunable full-color reflective displays[61]
    Chalcogenide glass-plasmon hybrid device. (a) Metasurface electro-optic switch[76]; (b) GST-based bidirectional, all-optical switch[74]; (c) GST-based perfect absorber[77]; (d) electrically tunable second-harmonic generator[78]
    All-dielectric chalcogenide glass metasurface. (a) Dolmen metamolecule structure[27]; (b) planar dielectric nano-grating metasurface[79]; (c) GSST-based reconfigurable non-volatile metasurface[28]
    Electrically controlled VO2 metasurface; (a) Terahertz VO2 memory metasurface[85]; (b) beam deflection through VO2-based metasurface[86]; (c) VO2‑based switchable terahertz metasurface[87]
    Thermally-controlled VO2 metasurface. (a) Self-aligned Ag/VO2 metasurface[88]; (b) VO2-based perfect absorber[89]; (c) thermal tuning of mid-infrared plasmonic antenna arrays[90]; (d) VO2-based tunable absorber[91]; (e) VO2-based plasmonic color generator[92]
    Flexible and stretchable materials-based tunable metasurface. (a) PDMS-based tunable structural color metasurface[98]; (b) full-spectrum stretchable plasmonic device[99]; (c) tunable elastic dielectric zoom lens[100]
    Example 1 of MEMS-based tunable metasurface. (a) MEMS-based metasurface dynamic waveplate[106]; (b) MEMS-based dynamic metasurface lens[37]; (c) MEMS-based dielectric zoom lens[107]; (d) MEMS-actuated metasurface Alvarez lens[108]
    Example 2 of MEMS based tunable metasurface. (a) MEMS-based Maltese-cross metasurface[109]; (b) mirrorlike T-shape terahertz metasurface[110]; (c) MEMS dynamic waveplate[111]
    Tools

    Get Citation

    Copy Citation Text

    Haotian Zheng, Song Zhang, Ting Xu. Advances in Tunable Electromagnetic Metasurfaces[J]. Acta Optica Sinica, 2023, 43(8): 0822004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Dec. 5, 2022

    Accepted: Mar. 13, 2023

    Published Online: Apr. 6, 2023

    The Author Email: Xu Ting (xuting@nju.edu.cn)

    DOI:10.3788/AOS222101

    Topics