Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1215013(2025)

Adaptive Weighted AD-Census Noise-Resistant Stereo Matching Algorithm Based on Cross-Support Arm

Sidong Cui1,2, Lei Zhang3, Haifeng Zhang2、*, Fengying Yue1, Zhichao Yue2, Yue Wang1,2, and Wenhao Li1,2
Author Affiliations
  • 1School of Electrical and Control Engineering, North University of China, Taiyuan 030051, Shanxi , China
  • 2Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi , China
  • 3Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China
  • show less
    Figures & Tables(16)
    Diagram of improved stereo matching algorithm
    Rectangular and circular matching templates
    Comparison of Census transform disparity maps before and after improvement. (a) Original images; (b) images with noise; (c) Census transform images; (d) improved Census transform images
    Schematic of cross-arm extension
    Line charts of average mismatch rate. (a)(c) Non-occlusion region; (b)(d) discontinuous disparity region
    Middlebury standard image experiment results. (a) Original images; (b) real disparity images; (c) disparity images of proposed algorithm; (d) depth images of proposed algorithm
    Boundary profile processing results
    Mismatch rates of different algorithms. (a) Non-occlusion region; (b) discontinuous disparity region; (c) mismatch rate of all pixels; (d) average mismatch rate
    Test diagrams of simulated planetary surface
    • Table 1. Comparison of various indicators before and after improvement

      View table

      Table 1. Comparison of various indicators before and after improvement

      AlgorithmTest imageNocc /%Disc /%PSNR
      CensusBowling20.3 ± 1.529.2 ± 2.210.629
      Wood15.4 ± 1.122.1 ± 1.812.817
      ImprovedCensusBowling10.8 ± 0.417.7 ± 0.715.825
      Wood9.6 ± 0.312.4 ± 0.519.006
    • Table 2. Parameter settings

      View table

      Table 2. Parameter settings

      λCensusλCannyλCsλADτ1τ2L1L2γL
      157122121730151
    • Table 3. Average mismatch rates of non-occlusion regions under different noise levels by different algorithms

      View table

      Table 3. Average mismatch rates of non-occlusion regions under different noise levels by different algorithms

      AlgorithmNoiselessAverage mismatch rate /%
      Gaussian noise varianceSalt and pepper noise density
      510155%10%15%
      SGM9.4±0.321.8±1.230.4±2.143.6±2.810.5±0.418.2±1.228.6±1.8
      SNCC6.5±0.220.4±1.028.6±1.840.9±2.58.4±0.217.6±1.024.4±1.2
      AD-Census7.5±0.419.4±1.135.6±2.349.4±3.29.5±0.320.5±1.535.3±2.2
      ELAS8.8±0.327.5±1.536.4±2.045.3±2.010.1±0.421.4±1.843.7±3.2
      ACVNet4.6±0.314.3±1.426.3±1.738.9±2.17.4±0.515.6±1.125.9±1.9
      BGNet5.4±0.216.2±1.227.6±2.139.5±2.38.9±0.416.8±1.526.7±1.4
      Ours5.6±0.215.4±0.825.9±1.434.8±2.17.6±0.212.9±0.920.2±1.5
    • Table 4. Average mismatch rates of discontinuous disparity regions under different noise levels by different algorithms

      View table

      Table 4. Average mismatch rates of discontinuous disparity regions under different noise levels by different algorithms

      AlgorithmNoiselessAverage mismatch rate /%
      Gaussian noise varianceSalt and pepper noise density
      510155%10%15%
      SGM12.5±0.417.9±1.031.2±2.042.7±2.315.6±1.224.6±1.533.2±2.0
      SNCC10.7±0.318.5±1.130.3±1.939.5±2.011.5±1.019.6±1.228.4±1.8
      AD-Census9.5±0.325.5±1.439.5±2.350.9±3.113.5±1.323.5±1.840.3±2.7
      ELAS10.9±0.426.6±1.537.4±2.249.6±2.712.9±0.923.4±1.145.4±2.4
      ACVNet6.5±0.215.6±1.230.9±1.640.5±2.410.6±1.120.5±1.734.6±2.1
      BGNet7.9±0.416.8±1.432.1±2.141.6±2.612.7±1.221.6±1.532.7±1.9
      Ours8.4±0.312.5±0.727.6±1.535.3±2.28.9±0.715.3±0.922.2±1.4
    • Table 5. Mismatch rates of different algorithms

      View table

      Table 5. Mismatch rates of different algorithms

      AlgorithmConeClothReindeerWoodAvg
      NoccDiscAllNoccDiscAllNoccDiscAllNoccDiscAll
      BSM2218.420.819.617.519.518.623.523.923.715.916.715.719.2
      PPEP-GF2311.814.512.713.415.815.317.221.318.613.615.913.815.3
      Z2ZNCC2415.616.615.514.717.614.918.821.719.115.514.816.216.8
      SGBM11714.915.813.813.714.614.216.716.417.412.612.711.314.6
      AD-Census611.314.413.412.415.412.814.718.115.712.416.414.514.1
      SGM1710.512.511.411.911.610.312.614.715.912.513.811.912.1
      r200high2521.222.322.120.619.822.423.226.224.423.324.823.721.4
      MC-CNN268.49.58.97.69.48.712.913.411.17.37.86.89.1
      SNCC189.713.812.810.511.39.413.115.217.28.911.79.811.9
      IGEV++272.44.03.82.73.63.32.93.93.12.83.42.53.2
      MoCha-V2282.84.63.13.54.74.02.35.23.93.74.43.83.5
      Ours7.69.18.35.57.66.38.711.710.46.47.57.38.7
    • Table 6. Running time of each algorithm

      View table

      Table 6. Running time of each algorithm

      AlgorithmBSMPPEP-GFZ2ZNCCSGBM1AD-CensusMC-CNNSNCCOurs
      Time /s3.142.442.573.642.341.682.421.42
    • Table 7. Comparison of measured and actual distances

      View table

      Table 7. Comparison of measured and actual distances

      No.Centroid coordinateMeasured distance /mmActual distance /mmError /%
      1(136, 242)677.5689.41.70
      2(307, 148)765.3749.12.10
      3(431, 426)482.4486.20.87
      4(564, 156)760.5772.71.60
      5(620, 78)834.3813.52.50
    Tools

    Get Citation

    Copy Citation Text

    Sidong Cui, Lei Zhang, Haifeng Zhang, Fengying Yue, Zhichao Yue, Yue Wang, Wenhao Li. Adaptive Weighted AD-Census Noise-Resistant Stereo Matching Algorithm Based on Cross-Support Arm[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1215013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 27, 2024

    Accepted: Apr. 8, 2025

    Published Online: Jun. 17, 2025

    The Author Email: Haifeng Zhang (zhanghf@opt.ac.cn)

    DOI:10.3788/LOP242334

    CSTR:32186.14.LOP242334

    Topics