Chinese Journal of Ship Research, Volume. 18, Issue 5, 260(2023)

Self-attention and subdomain adaptive adversarial network for bearing fault diagnosis under varying operation conditions

Chao WANG1, Bo TIAN2, Zirui LI1, Xiaoqi WANG1, and Jun WU1
Author Affiliations
  • 1School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2China Ship Development and Design Center, Wuhan 430064, China
  • show less
    References(17)

    [1] ZHANG X L, CHEN W, WANG B J et al. Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization[J]. Neurocomputing, 167, 260-279(2015).

    [2] JEGADEESHWARAN R, SUGUMARAN V. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines[J]. Mechanical Systems & Signal Processing, 52-53, 436-446(2015).

    [4] ZHAO M H, ZHONG S S, FU X Y et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Trans-actions on Industrial Informatics, 16, 4681-4690(2019).

    [5] [5] INCE T , KIRANYAZ S , EREN L , et al. Realtime mot fault detection by 1D convolutional neural wks[C]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 70677075.

    [8] [8] CSURKA G. Domain adaptation in computer vision applications [M]. Cham: Springer International Publishing AG, 2017: 135.

    [9] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on knowledge and data engineering, 22, 1345-1359(2009).

    [10] [10] ZHUANG F Z, CHENG X H, LUO P, et al. Supervised representation learning: transfer learning with deep autoencoders[C] Proceedings of the TwentyFourth International Joint Conference on Artificial Intelligence, 2015: 4119−4125.

    [11] ZHUANG F Z, QI Z Y, DUAN K Y et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 109, 43-76(2020).

    [13] CHEN H T, CHAI Z, JIANG B et al. Data-driven fault detection for dynamic systems with performance degradation: a unified transfer learning framework[J]. IEEE Transactions on Instrumentation and Measurement, 70, 1-12(2020).

    [15] PAN S J, TSANG I W, KWOK J T et al. Domain adaptation via transfer component analysis[J]. IEEE transactions on neural networks, 22, 199-210(2010).

    [18] [18] WOO S , PARK J , LEE J Y , et al. CBAM: convolutional block attention module[C]Proceedings of ECCV 2018: 15th European Conference on Computer Vision.Munich, Germany: SpringerVerlag, 2018: 3−19.

    [19] ZHU Y C, ZHUANG F Z, WANG J D et al. Deep sub-domain adaptation network for image classification[J]. IEEE transactions on neural networks and learning systems, 32, 1713-1722(2020).

    Tools

    Get Citation

    Copy Citation Text

    Chao WANG, Bo TIAN, Zirui LI, Xiaoqi WANG, Jun WU. Self-attention and subdomain adaptive adversarial network for bearing fault diagnosis under varying operation conditions[J]. Chinese Journal of Ship Research, 2023, 18(5): 260

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Marine Machinery, Electrical Equipment and Automation

    Received: Sep. 23, 2022

    Accepted: --

    Published Online: Mar. 21, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.03092

    Topics