Chinese Journal of Ship Research, Volume. 18, Issue 5, 260(2023)

Self-attention and subdomain adaptive adversarial network for bearing fault diagnosis under varying operation conditions

Chao WANG1, Bo TIAN2, Zirui LI1, Xiaoqi WANG1, and Jun WU1
Author Affiliations
  • 1School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2China Ship Development and Design Center, Wuhan 430064, China
  • show less
    Figures & Tables(14)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Parameters of SASAAN

      View table
      View in Article

      Table 1. Parameters of SASAAN

      模块网络结构输出尺寸通道数×内核尺寸
      特征提取器输入64×64×3
      CBAM64×64×3232×5×5
      CBAM30×30×5050×5×5
      CBAM13×13×6464×4×4
      子域自适应模块FC1600
      FC2200
      FC33
      域判别器FC1600
      FC2200
      FC32
    • Table 2. The Ottawa bearing dataset

      View table
      View in Article

      Table 2. The Ottawa bearing dataset

      数据集健康状态工况样本量
      渥太华轴承数据集健康(H)内圈故障(I)外圈故障(O)加速(A)2 400
      减速(B)2 400
      先加速再减速(C)2 400
      先减速再加速(D)2 400
    • Table 3. Experimental parameters

      View table
      View in Article

      Table 3. Experimental parameters

      参数数值
      子域自适应强度系数0.5
      初始学习率0.000 1
      样本批量40
      最大训练次数/次120
      训练样本量/个2400600
      测试样本量/个1800
    • Table 4. Average diagnostic accuracy of twelve one-to-one transfer tasks on the target domain test set

      View table
      View in Article

      Table 4. Average diagnostic accuracy of twelve one-to-one transfer tasks on the target domain test set

      迁移任务目标域测试准确率/%迁移任务目标域测试准确率/%
      A→B98.17±0.6775.22±1.89C→A98.25±0.6672.38±1.06
      A→C97.94±1.2176.31±2.33C→B98.89±0.4574.33±1.31
      A→D98.78±0.3475.85±2.18C→D98.72±1.1975.16±3.04
      B→A99.11±0.3276.77±1.95D→A99.06±0.5678.47±1.79
      B→C98.06±0.9877.59±0.83D→B96.22±1.9873.94±2.77
      B→D98.22±1.0375.64±2.19D→C98.06±0.7976.05±1.62
    • Table 5. Comparison of diagnostic accuracy of different methods

      View table
      View in Article

      Table 5. Comparison of diagnostic accuracy of different methods

      方法多工况迁移任务诊断精度/%平均精度/%
      A→BCDB→ACDC→ABDD→ABC
      DCNN76.11±2.4275.16±1.6278.14±3.3275.34±1.9476.19
      DDC87.46±2.1683.43±0.9888.36±1.6986.78±3.4386.51
      DAN92.44±1.2788.11±1.4591.12±0.7690.17±0.5690.46
      DANN95.39±0.7894.12±1.0695.35±0.9394.28±1.4694.79
      SAAN97.05±0.7796.22±0.8196.78±1.4395.53±1.5496.40
      SASAAN98.78±0.5498.39±0.6398.89±1.2398.04±0.8898.53
    Tools

    Get Citation

    Copy Citation Text

    Chao WANG, Bo TIAN, Zirui LI, Xiaoqi WANG, Jun WU. Self-attention and subdomain adaptive adversarial network for bearing fault diagnosis under varying operation conditions[J]. Chinese Journal of Ship Research, 2023, 18(5): 260

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Marine Machinery, Electrical Equipment and Automation

    Received: Sep. 23, 2022

    Accepted: --

    Published Online: Mar. 21, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.03092

    Topics