Laser & Optoelectronics Progress, Volume. 61, Issue 23, 2312003(2024)
Inversion of Light Scattering for Optical Component Defects Using a Cascaded Machine Learning Algorithm
Fig. 7. Geometric schematic diagrams of three types of defects. (a) class-0; (b) class-1; (c) class-2
Fig. 9. Angular resolution scattering signals of class-0. (a) d=0.05 µm; (b) d=0.2 µm; (c) d=0.35 µm; (d) d=0.5 µm; (e) d=0.65 µm;(f) d=0.8 µm
Fig. 11. Predicted results of width and depth regressors. (a) class-0 width regressor; (b) class-1 depth regressor; (c) class-1 width regressor; (d) class-1 depth regressor; (e) class-2 width regressor; (f) class-2 depth regressor
|
Get Citation
Copy Citation Text
Weibin Cai, Feibin Wu, Ruyi Li, Jun Han. Inversion of Light Scattering for Optical Component Defects Using a Cascaded Machine Learning Algorithm[J]. Laser & Optoelectronics Progress, 2024, 61(23): 2312003
Category: Instrumentation, Measurement and Metrology
Received: Feb. 5, 2024
Accepted: Apr. 3, 2024
Published Online: Nov. 19, 2024
The Author Email: Jun Han (junhan@fjirsm.ac.cn)
CSTR:32186.14.LOP240664