Acta Optica Sinica, Volume. 41, Issue 19, 1923001(2021)

Graphene Surface Plasmon Polariton Modulator Based on Biased Nanowires

Xiangzhuang Kong1, Jinhua Li1, Xiaoman Luo1, Chengkai Jiang1, Zhanghua Han2, and Youqiao Ma1、*
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
  • 2School of Physics and Electronic Science, Shandong Normal University, Jinan, shandong 250358, China
  • show less
    References(36)

    [1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [2] Zayats A V, Smolyaninov I I, Maradudin A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 408, 131-314(2005).

    [3] Chen J J, Sun C W, Li H Y et al. Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit[J]. Nanoscale, 6, 13487-13493(2014).

    [4] Maier S A. Plasmonics: the promise of highly integrated optical devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 1671-1677(2006).

    [5] Chen N, Zhang X D, Chang M et al. Broadband plasmonic polarization filter based on photonic crystal fiber with dual-ring gold layer[J]. Micromachines, 11, 470(2020).

    [6] Liu Q, Ma Z, Wu Q et al. The biochemical sensor based on liquid-core photonic crystal fiber filled with gold, silver and aluminum[J]. Optics & Laser Technology, 130, 106363(2020).

    [7] Jia Y, Li Z F, Wang H Q et al. Sensitivity enhancement of a surface plasmon resonance sensor with platinum diselenide[J]. Sensors, 20, E131(2019).

    [8] Wang Y, Yu J, Mao Y F et al. Stable, high-performance sodium-based plasmonic devices in the near infrared[J]. Nature, 581, 401-405(2020).

    [9] Epstein I, Chaves A J, Rhodes D A et al. Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors[J]. 2D Materials, 7, 035031(2020).

    [10] Kalhor S, Ghanaatshoar M, Delfanazari K. Guiding of terahertz photons in superconducting nano-circuits[C]//2020 International Conference on UK-China Emerging Technologies (UCET), August 20-21, 2020, Glasgow, UK., 20030975(2020).

    [11] Rufangura P, Folland T G, Agrawal A et al. Towards low- loss on-chip nanophotonics with coupled graphene and silicon carbide: a review[J]. Journal of Physics: Materials, 3, 032005(2020).

    [12] Yang L, Ma L H, Zhong Y H et al. Simulation design of silicon based quantum well nanolaser based on surface plasmon polariton[J]. Journal of Optics, 22, 095002(2020).

    [13] Chubchev E D, Nechepurenko I A, Dorofeenko A V et al. Nanostructured optical waveguide with a highly confined mode[J]. Journal of the Optical Society of America B, 37, 2732-2737(2020).

    [14] Lafmejani S R, Khatir M. Miniaturized plasmonic magneto-optic Mach-Zehnder isolator using graphene and optical gain medium[J]. Optik, 228, 166200(2021).

    [15] Islam M A, Alam M S. Design of a broadband single mode hybrid plasmonic waveguide incorporating silicon nanowire[J]. Optical Materials Express, 10, 2783-2799(2020).

    [16] Wang Z B, Yin S J, Duan X N et al. Hybrid surface-plasmon waveguide with symmetrical triangular ribs[J]. Chinese Journal of Lasers, 47, 0313001(2020).

    [17] Huong N T, Hoang C M. Modal characteristics and the tunability of horizontal hybrid gap plasmonic waveguide[J]. Applied Physics B, 126, 27(2020).

    [18] Yang L, Duan Z Y, Ma L H et al. Surface plasmon polariton nanolasers[J]. Laser & Optoelectronics Progress, 56, 202409(2019).

    [19] Roy B, Majumder S, Chakraborty R. Design of low loss surface plasmon polariton waveguide and its use as hybrid Tamm sensor with improved sensitivity[J]. Optical Engineering, 59, 017108(2020).

    [20] Dong G X, Li X P, Liu Y M et al. Variable operating frequencies spoof SPP filter based on double-layers structure[J]. IEEE Photonics Technology Letters, 33, 131-134(2021).

    [21] Shirdel M. Mansouri-Birjandi M A. A broadband graphene modulator based on plasmonic valley-slot waveguide[J]. Optical and Quantum Electronics, 52, 36(2019).

    [22] Teng D, Zhao Y Z, Wang Y C et al. Graphene plasmonic waveguide based on silicon-on-insulator structure[J]. Laser & Optoelectronics Progress, 58, 0323001(2021).

    [23] Sun D H, Zhang Y W, Wang D Z et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications[J]. Light: Science & Applications, 9, 197(2020).

    [24] Wang Y, Li S S, Yang H Y et al. Progress in the functional modification of graphene/graphene oxide: a review[J]. RSC Advances, 10, 15328-15345(2020).

    [25] Olabi A G, Abdelkareem M A, Wilberforce T et al. Application of graphene in energy storage device: a review[J]. Renewable and Sustainable Energy Reviews, 135, 110026(2021).

    [26] Tiwari S K, Sahoo S, Wang N N et al. Graphene research and their outputs: status and prospect[J]. Journal of Science: Advanced Materials and Devices, 5, 10-29(2020).

    [27] Mao D, Cheng C, Wang F F et al. Device architectures for low voltage and ultrafast graphene integrated phase modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 20018555(2021).

    [28] Fan M Y, Yang H M, Zheng P F et al. Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide[J]. Optics Express, 25, 21619-21629(2017).

    [29] Lu Y, Cai K S, Li Y E et al. A high speed optical modulator based on graphene-on-graphene hybrid nanophotonic waveguide[J]. Optik, 179, 216-221(2019).

    [30] Chen W, Xu Y, Gao Y et al. A broadband polarization-insensitive graphene modulator based on dual built-in orthogonal slots plasmonic waveguide[J]. Applied Sciences, 11, 1897(2021).

    [31] Ma Y Q, Li J H, Han Z H et al. All-dielectric graphene-induced T-slot waveguide electro-optic modulator with polarization-independent operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 20316875(2021).

    [32] Ye L F, Sui K H, Zhang Y et al. Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications[J]. Nanoscale, 11, 3229-3239(2019).

    [33] Gao Y, Zhou G D, Zhao N et al. High-performance chemical vapor deposited graphene-on-silicon nitride waveguide photodetectors[J]. Optics Letters, 43, 1399-1402(2018).

    [34] Wittemann J V, Münchgesang W, Senz S et al. Silver catalyzed ultrathin silicon nanowires grown by low-temperature chemical-vapor-deposition[J]. Journal of Applied Physics, 107, 096105(2010).

    [35] Li J, Li W, Peng J et al. Progress of silver nanowire prepared by polyol method[J]. New Chemical Materials, 47, 11-14(2019).

    [36] Moreno-Moreno M, Ares P, Moreno C et al. AFM manipulation of gold nanowires to build electrical circuits[J]. Nano Letters, 19, 5459-5468(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xiangzhuang Kong, Jinhua Li, Xiaoman Luo, Chengkai Jiang, Zhanghua Han, Youqiao Ma. Graphene Surface Plasmon Polariton Modulator Based on Biased Nanowires[J]. Acta Optica Sinica, 2021, 41(19): 1923001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Mar. 11, 2021

    Accepted: Apr. 21, 2021

    Published Online: Oct. 29, 2021

    The Author Email: Ma Youqiao (mayouqiao188@hotmail.com)

    DOI:10.3788/AOS202141.1923001

    Topics