Photonics Research, Volume. 13, Issue 4, 827(2025)
Spatial–spectral sparse deep learning combined with a freeform lens enables extreme depth-of-field hyperspectral imaging
[23] E. J. Candes, T. Tao. Decoding by linear programming. IEEE Inform. Theory, 51, 4203-4215(2005).
[24] Z. Rahman, D. J. Brady, S. E. Reichenbach. Compressive imaging spectrometers using coded apertures. Proc. SPIE, 6246, 62460A(2006).
[26] D. P. Casasent, A. A. Wagadarikar, T. Clark. Single disperser design for compressive, single-snapshot spectral imaging. Proc. SPIE, 6714, 67140A(2007).
[51] S.-H. Baek, H. Ikoma, D. S. Jeon. Single-shot hyperspectral-depth imaging with learned diffractive optics. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2651-2660(2021).
[64] E. Sahin, U. Akpinar, A. Kim. Learning extended depth of field hyperspectral imaging. IEEE International Conference on Image Processing, 1850-1854(2023).
[69] B. Arad, R. Timofte, O. Ben-Shahar. NTIRE 2020 challenge on spectral reconstruction from an RGB image. Proceeding of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 446-447(2020).
Get Citation
Copy Citation Text
Yitong Pan, Zhenqi Niu, Songlin Wan, Xiaolin Li, Zhen Cao, Yuying Lu, Jianda Shao, Chaoyang Wei, "Spatial–spectral sparse deep learning combined with a freeform lens enables extreme depth-of-field hyperspectral imaging," Photonics Res. 13, 827 (2025)
Category: Imaging Systems, Microscopy, and Displays
Received: Sep. 6, 2024
Accepted: Jan. 3, 2025
Published Online: Mar. 10, 2025
The Author Email: Chaoyang Wei (siomwei@siom.ac.cn)
CSTR:32188.14.PRJ.541560