Acta Optica Sinica, Volume. 44, Issue 16, 1615001(2024)

Surface Defect Detection of Mobile Phone Covers Based on Improved BiSeNet V2

Bo Liu, Tingting Wang*, and Jie Liu
Author Affiliations
  • College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213200, Jiangsu , China
  • show less
    Figures & Tables(19)
    Image of cover window area and cropping diagram. (a) Cover window area diagram; (b) cropping diagram
    Cell phone cover part of the defect and labeling example diagrams. (a) Shadow scratch; (b) surface dust; (c) dirt; (d) black scratch; (e) white scratch; (f) white point; (g) black point
    Structure diagram of BiSeNet V2
    Example images of weighted image difference and feature enhancement. (a) Original defect image; (b) difference image; (c) difference overlay image
    Weighted image difference histogram. (a) Original defect histogram; (b) difference histogram; (c) difference overlay histogram
    Structure diagram of detail branch convolutional layer improvement. (a) Original convolutional block; (b) group dilation convolution block
    SE attention block
    SE attention embeded in semantic branching. (a) Stem block; (b) gather-and-expansion layer (GE 2)
    Gather-and-expansion layer and context embedding block. (a) Gather-and-expansion layer (GE 1); (b) context embedding block
    Bilateral guidance aggregation module
    Seg head block
    Multi-scale feature fusion decoding network
    Structure diagram of improved BiSeNet V2
    Comparisons of segmentation prediction results. (a) Original defect map; (b) defect labels; (c) original network segmentation prediction results; (d) improved network segmentation prediction results
    • Table 1. Instantiation table for improved bilateral feature extraction network

      View table

      Table 1. Instantiation table for improved bilateral feature extraction network

      Process phaceImproved detail branchImproved semantic branchOutput feature map size
      Blockkcsrnd1d2Blockkcesr
      S1Conv2d36411---Stem316-41256×256
      GDC36421412128×128
      S2GDC31282141264×64
      S3GDC325621812GE 233262132×32
      GE 133261132×32
      S4GE 233262116×16
      GE 133261116×16
      CE3128-1116×16
    • Table 2. Experimental environment configuration

      View table

      Table 2. Experimental environment configuration

      Hardware and software configurationVersion parameter
      GPUNVIDIA Geforce RTX 2080Ti, 11 GB
      CPUInter(R) Core(TM) i9-9900 K, 3.60 GHz
      Memory32G
      Deep learning frameworkPyTorch v1.10.0
      Model computing platformCUDA v11.1
      CompilerPyCharm v2020.2.5
      Programming languagePython3.8
      Open source vision libraryOpencCV-python v4.4.0
    • Table 3. Comparison of segmentation accuracy of various improvement methods

      View table

      Table 3. Comparison of segmentation accuracy of various improvement methods

      Experimental modelWeighted image differencePacket dilatation convolutionSE attention mechanismMulti-scale feature fusionMIoU /%MPA /%
      M072.2477.67
      M180.7382.86
      M281.3882.29
      M381.7983.16
      M482.3283.55
    • Table 4. Comparison of different segmentation networks

      View table

      Table 4. Comparison of different segmentation networks

      Network modelMIoU /%MPA /%FLOPs /GBFPS
      FCN_8s70.3174.2523.16264.1
      UNet74.7376.6231.07159.5
      BiSeNet V170.8675.033.81609.8
      BiSeNet V272.2477.674.45570.4
      DeepLab V3+79.4582.386.63466.3
      Improved network82.3283.559.44301.5
    • Table 5. Quantitative statistics of defect detection

      View table

      Table 5. Quantitative statistics of defect detection

      Index nameValue
      Total number of normal image samples100
      Total number of defective image samples354
      Total defect458
      Normal sample correctly detected99
      Number of false detection in normal sample1
      Defects are correctly classified and detected418
      Defect misclassification detected23
      Number of missed defects17
      Normal sample error rate /%1.00
      Accuracy rate of correct defect detection /%91.27
      Defect misclassification rate /%5.02
      Defect missing rate /%3.71
    Tools

    Get Citation

    Copy Citation Text

    Bo Liu, Tingting Wang, Jie Liu. Surface Defect Detection of Mobile Phone Covers Based on Improved BiSeNet V2[J]. Acta Optica Sinica, 2024, 44(16): 1615001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Feb. 27, 2024

    Accepted: Apr. 18, 2024

    Published Online: Aug. 2, 2024

    The Author Email: Wang Tingting (20121894@hhu.edu.cn)

    DOI:10.3788/AOS240659

    Topics