Acta Optica Sinica, Volume. 44, Issue 1, 0106013(2024)
Coding Technique for Distributed Fiber Sensors
[1] Lu P, Lalam N, Badar M et al. Distributed optical fiber sensing: review and perspective[J]. Applied Physics Reviews, 6, 041302(2019).
[2] Liu S Q, Yu F H, Hong R et al. Advances in phase-sensitive optical time-domain reflectometry[J]. Opto-Electronic Advances, 5, 200078(2022).
[3] Li J, Zhang M J. Physics and applications of Raman distributed optical fiber sensing[J]. Light: Science & Applications, 11, 128(2022).
[4] Dong Y K. High-performance distributed Brillouin optical fiber sensing[J]. Photonic Sensors, 11, 69-90(2021).
[5] Li C L, Tang J G, Cheng C et al. FBG arrays for quasi-distributed sensing: a review[J]. Photonic Sensors, 11, 91-108(2021).
[6] Bao Y B, Sun J Q, Huang Q. Distributed fiber sensor based on Brillouin optical time domain reflection technique[J]. Laser & Optoelectronics Progress, 57, 210002(2020).
[7] Zhang X P, Ding Z W, Hong R et al. Phase sensitive optical time-domain reflective distributed optical fiber sensing technology[J]. Acta Optica Sinica, 41, 0106004(2021).
[8] Karladani A, Mehdi M. Impact of modulation instability on distributed optical fiber sensors[R], 138(2016).
[9] Horiguchi T, Shimizu K, Kurashima T et al. Development of a distributed sensing technique using Brillouin scattering[J]. Journal of Lightwave Technology, 13, 1296-1302(1995).
[10] He Z Y, Liu Y P, Ma L et al. Raman distributed temperature sensor using multimode fiber with reduced core size[J]. Infrared and Laser Engineering, 48, 0422002(2019).
[11] Chen J F, Li H, Liu T et al. Fully distributed hydroacoustic sensing based on lightweight optical cable assisted with scattering enhanced fiber[C](2021).
[12] Lu P, Mihailov S, Coulas D et al. Low-loss random fiber gratings made with an fs-IR laser for distributed fiber sensing[J]. Journal of Lightwave Technology, 37, 4697-4702(2019).
[13] Westbrook P S, Feder K S, Kremp T et al. Enhanced optical fiber for distributed acoustic sensing beyond the limits of Rayleigh backscattering[J]. iScience, 23, 101137(2020).
[14] Muanenda Y S, Taki M, Nannipieri T et al. Advanced coding techniques for long-range Raman/BOTDA distributed strain and temperature measurements[J]. Journal of Lightwave Technology, 34, 342-350(2016).
[15] Jedwab J. A survey of the merit factor problem for binary sequences[M]. Helleseth T, Sarwate D, Song H Y, et al. Sequences and their applications-SETA 2004, 3486, 30-55(2005).
[16] Lee D, Yoon H, Kim P et al. Optimization of SNR improvement in the noncoherent OTDR based on simplex codes[J]. Journal of Lightwave Technology, 24, 322-328(2006).
[17] Wang Y P, Sun X H, Xue Q et al. The study of the Raman-based optical fiber-folded distributed temperature sensing system with simplex code[J]. Optics Communications, 420, 200-204(2018).
[18] Dai G Y, Fan X Y, He Z Y. A long-range fiber-optic Raman distributed temperature sensor based on dual-source scheme and RZ simplex coding[C](2018).
[19] Faralli S, Nannipieri T, Signorini A et al. Amplified space-time coding for ultra-long-distance Raman distributed temperature sensing[J]. Proceedings of SPIE, 12643, 1264320(2023).
[20] Song M P, Bao C, Ye X F. Raman distributed optical fiber sensor with simplex coding optical external modulation[J]. Chinese Journal of Lasers, 37, 1462-1466(2010).
[21] Wang Q L, Bai Q, Liang C S et al. Random coding method for SNR enhancement of BOTDR[J]. Optics Express, 30, 11604-11618(2022).
[22] Wan S P, Xiong Y H, He X D. The theoretical analysis and design of coding BOTDR system with APD detector[J]. IEEE Sensors Journal, 14, 2626-2632(2014).
[23] Wang F, Zhu C H, Cao C Q et al. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding[J]. Optics Express, 25, 3504-3513(2017).
[24] Li Y Q, Li X J, Fan H B et al. SNR improvement in self-heterodyne detection Brillouin optical time domain reflectometer using Golay pulse codes[J]. Optoelectronics Letters, 13, 414-418(2017).
[25] Sun X Z, Yang Z S, Hong X B et al. Genetic-optimised aperiodic code for distributed optical fibre sensors[J]. Nature Communications, 11, 5774(2020).
[26] Gnauck A H, Winzer P J. Optical phase-shift-keyed transmission[J]. Journal of Lightwave Technology, 23, 115-130(2005).
[27] Ma X J. Brillouin optical time-domain reflectometer with ultra-high spatial resolution[D](2019).
[28] Dorize C, Awwad E, Renaudier J. High sensitivity Φ‑OTDR over long distance with polarization multiplexed codes[J]. IEEE Photonics Technology Letters, 31, 1654-1657(2019).
[29] Li P H, Wang Y, Liu X et al. Quadrature phase-shift keying modulation with random coding pulse for long-range Φ‑OTDR[J]. Journal of Lightwave Technology, 41, 3225-3233(2023).
[30] Mompó J J, Shiloh L, Arbel N et al. Distributed dynamic strain sensing via perfect periodic coherent codes and a polarization diversity receiver[J]. Journal of Lightwave Technology, 37, 4597-4602(2019).
[31] Liu S Q, Shao L Y, Yu F H et al. Quantitative demodulation of distributed low-frequency vibration based on phase-shifted dual-pulse phase-sensitive OTDR with direct detection[J]. Optics Express, 30, 10096-10109(2022).
[32] Ahmad A, Al-Maashri A. Investigating some special sequence lengths generated in an external exclusive-NOR type LFSR[J]. Computers & Electrical Engineering, 34, 270-280(2008).
[33] Gold R. Optimal binary sequences for spread spectrum multiplexing[J]. IEEE Transactions on Information Theory, 13, 619-621(1967).
[34] Welch L. Lower bounds on the maximum cross correlation of signals[J]. IEEE Transactions on Information Theory, 20, 397-399(1974).
[35] Goiser A M J[M]. Handbuch der spread-spectrum technik(2013).
[36] Golay M. A class of finite binary sequences with alternate auto-correlation values equal to zero[J]. IEEE Transactions on Information Theory, 18, 449-450(1972).
[37] Frank R. Polyphase codes with good nonperiodic correlation properties[J]. IEEE Transactions on Information Theory, 9, 43-45(1963).
[38] Frank R. Polyphase complementary codes[J]. IEEE Transactions on Information Theory, 26, 641-647(1980).
[39] Zepernick H J, Finger A[M]. Pseudo random signal processing: theory and application(2013).
[40] Chu D. Polyphase codes with good periodic correlation properties[J]. IEEE Transactions on Information Theory, 18, 531-532(1972).
[41] Zhang N, Golomb S W. Polyphase sequence with low autocorrelations[J]. IEEE Transactions on Information Theory, 39, 1085-1089(1993).
[42] Stoica P, He H, Li J. New algorithms for designing unimodular sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 57, 1415-1425(2009).
[43] Song J X, Babu P, Palomar D P. Optimization methods for designing sequences with low autocorrelation sidelobes[J]. IEEE Transactions on Signal Processing, 63, 3998-4009(2015).
[44] Lü J. Distributed optical fiber acoustic sensor based on coding correlation[D](2023).
[46] Jones M D. Using simplex codes to improve OTDR sensitivity[J]. IEEE Photonics Technology Letters, 5, 822-824(1993).
[47] Lee D, Yoon H, Kim P et al. SNR enhancement of OTDR using biorthogonal codes and generalized inverses[J]. IEEE Photonics Technology Letters, 17, 163-165(2005).
[48] Sahu P K, Gowre S C, Mahapatra S. Optical time-domain reflectometer performance improvement using complementary correlated Prometheus orthonormal sequence[J]. IET Optoelectronics, 2, 128-133(2008).
[49] Zhang P, Feng Q G, Li W et al. Simultaneous OTDR dynamic range and spatial resolution enhancement by digital LFM pulse and short-time FrFT[J]. Applied Sciences, 9, 668(2019).
[50] Liao R L, Tang M, Zhao C et al. Harnessing oversampling in correlation-coded OTDR[J]. Optics Express, 27, 1693-1705(2019).
[51] Wang Z N, Zhang B, Xiong J et al. Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR[J]. IEEE Internet of Things Journal, 6, 6117-6124(2019).
[52] Tomboza W, Guerrier S, Awwad E et al. High sensitivity differential phase OTDR for acoustic signals detection[J]. IEEE Photonics Technology Letters, 33, 645-648(2021).
[53] Soto M A, Nannipieri T, Signorini A et al. Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding[J]. Optics Letters, 36, 2557-2559(2011).
[54] Soto M A, Bolognini G, Di Pasquale F. Analysis of pulse modulation format in coded BOTDA sensors[J]. Optics Express, 18, 14878-14892(2010).
[55] Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration[J]. Light: Science & Applications, 5, e16074(2016).
[56] Sun Q, Sun S L, Wang J F et al. Long-range distributed temperature sensing with sub-meter scale spatial resolution based on BOTDA employing pre-pumped Golay coding[J]. Proceedings of SPIE, 10323, 1032386(2017).
[57] Zan M S D, Masui Y, Horiguchi T. Differential cross spectrum technique for improving the spatial resolution of BOTDR sensor[C](2018).
[58] Li Z L, Yang Z S, Yan L S et al. Hybrid Golay-coded Brillouin optical time-domain analysis based on differential pulses[J]. Optics Letters, 43, 4574-4577(2018).
[59] Zan M S D, Mokhtar M H H, Elgaud M M et al. Pulse coding technique in differential cross-spectrum BOTDR for improving the Brillouin frequency accuracy and spatial resolution[C], 11-12(2020).
[60] Zhou Y, Yan L S, Liu C et al. Hybrid aperiodic coding for SNR improvement in a BOTDA fiber sensor[J]. Optics Express, 29, 33926-33936(2021).
[61] Li Y Q, Zhao C, Wu H et al. Long-range and high spatial resolution Brillouin time domain sensor using oversampling coding and deconvolution algorithm[J]. IEEE Sensors Journal, 22, 14883-14891(2022).
[62] Wei W L, Shen L, Zhao Z Y et al. Performance enhanced BOTDA sensor using differential Golay coding and deconvolution algorithm[C], 1-3(2022).
[63] Li W H, Bao X Y, Li Y et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 16, 21616-21625(2008).
[64] Liang H, Li W H, Linze N et al. High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses[J]. Optics Letters, 35, 1503-1505(2010).
[65] Soto M A, Taki M, Bolognini G et al. Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification[J]. Optics Express, 20, 6860-6869(2012).
[66] Soto M A, Le Floch S, Thévenaz L. Bipolar optical pulse coding for performance enhancement in BOTDA sensors[J]. Optics Express, 21, 16390-16397(2013).
[67] Le Floch S, Sauser F, Llera M et al. Novel Brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses[J]. Journal of Lightwave Technology, 33, 2623-2627(2015).
[68] Yang Z S, Li Z L, Zaslawski S et al. Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers[J]. Optics Express, 26, 16505-16523(2018).
[69] Yang Z S, Soto M A, Thévenaz L. Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors[J]. Optics Express, 24, 586-597(2015).
[70] Wu F, Li D M, Zhong Y B et al. FPGA-based fast pulse coding and decoding technique for Brillouin optical time domain analyzer[J]. Proceedings of SPIE, 12605, 126050T(2023).
[71] Dorize C, Awwad E. Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes[J]. Optics Express, 26, 12878-12890(2018).
[72] Fu X L, Yang W, Wang J Q et al. Noise resilient quasi-distributed sensing with an interferometric-noise-suppressing Golay coded optical source[J]. Optics Express, 27, 25330-25341(2019).
[73] Tang J G, Wang G D, Lü W H et al. Distributed acoustic sensing system based on inserting-zero Golay coding with ultra-weak fiber Bragg gratings[J]. IEEE Sensors Journal, 22, 15985-15990(2022).
[74] Zhang T F, Lü J, Li W et al. Coded phase-sensitive OTDR with delayed polarization multiplexing for a WFBG array[J]. Optics Express, 31, 3708-3718(2023).
Get Citation
Copy Citation Text
Quancong Lin, Linghao Cheng, Lü Jie, Tianfang Zhang, Hao Liang, Baiou Guan. Coding Technique for Distributed Fiber Sensors[J]. Acta Optica Sinica, 2024, 44(1): 0106013
Category: Fiber Optics and Optical Communications
Received: Aug. 15, 2023
Accepted: Sep. 28, 2023
Published Online: Jan. 12, 2024
The Author Email: Cheng Linghao (chenglh@ieee.org), Liang Hao (tlianghao@jnu.edu.cn)
CSTR:32393.14.AOS231418