Laser & Optoelectronics Progress, Volume. 60, Issue 20, 2028001(2023)
Semi-Supervised Hyperspectral Anomaly Detection Based on Spatial-Spectral Background Reconstruction
[1] Li Z Y, Yu W X, Kuang G Y et al. The research of anomaly detection based on high-dimensional geometrical feature in hyperspectral imagery[J]. Remote Sensing Technology and Application, 18, 379-383(2003).
[2] Plaza A, Benediktsson J A, Boardman J W et al. Recent advances in techniques for hyperspectral image processing[J]. Remote Sensing of Environment, 113, S110-S122(2009).
[3] Wang Q, Lin J Z, Yuan Y. Salient band selection for hyperspectral image classification via manifold ranking[J]. IEEE Transactions on Neural Networks and Learning Systems, 27, 1279-1289(2016).
[4] Nasrabadi N M. Hyperspectral target detection: an overview of current and future challenges[J]. IEEE Signal Processing Magazine, 31, 34-44(2014).
[5] Li L, Li W, Du Q et al. Low-rank and sparse decomposition with mixture of Gaussian for hyperspectral anomaly detection[J]. IEEE Transactions on Cybernetics, 51, 4363-4372(2021).
[6] Jiang T, Xie W, Li Y et al. Weakly supervised discriminative learning with spectral constrained generative adversarial network for hyperspectral anomaly detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 33, 6504-6517(2022).
[7] Li S T, Zhang K Z, Duan P H et al. Hyperspectral anomaly detection with kernel isolation forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 319-329(2020).
[8] Reed I S, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38, 1760-1770(1990).
[9] Molero J M, Garzón E M, García I et al. Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6, 801-814(2013).
[10] Li W, Du Q, Zhang B. Combined sparse and collaborative representation for hyperspectral target detection[J]. Pattern Recognition, 48, 3904-3916(2015).
[11] Li W, Du Q. Collaborative representation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 1463-1474(2015).
[12] Zhang Y X, Du B, Zhang L P et al. A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 1376-1389(2016).
[13] Wang R, Hu H, He F et al. Self-weighted collaborative representation for hyperspectral anomaly detection[J]. Signal Processing, 177, 107718(2020).
[14] Cheng T K, Wang B. Graph and total variation regularized low-rank representation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 391-406(2020).
[15] Kang X D, Zhang X P, Li S T et al. Hyperspectral anomaly detection with attribute and edge-preserving filters[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 5600-5611(2017).
[16] Xie W Y, Jiang T, Li Y S et al. Structure tensor and guided filtering-based algorithm for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 4218-4230(2019).
[17] Ergen T, Kozat S S. Unsupervised anomaly detection with LSTM neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 31, 3127-3141(2020).
[18] Li Z W, Shi S X, Wang L Q et al. Unsupervised generative adversarial network with background enhancement and irredundant pooling for hyperspectral anomaly detection[J]. Remote Sensing, 14, 1265(2022).
[19] Jiang K, Xie W Y, Li Y S et al. Semisupervised spectral learning with generative adversarial network for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 5224-5236(2020).
[20] Hinton G E, Zemel R S. Autoencoders, minimum description length and Helmholtz free energy[C], 3-10(1993).
[21] Xie W Y, Liu B Z, Li Y S et al. Autoencoder and adversarial-learning-based semisupervised background estimation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 5416-5427(2020).
[22] Arisoy S, Nasrabadi N M, Kayabol K. Unsupervised pixel-wise hyperspectral anomaly detection via autoencoding adversarial networks[J]. IEEE Geoscience and Remote Sensing Letters, 19, 5502905(2021).
[23] Su H J, Wu Z Y, Zhang H H et al. Hyperspectral anomaly detection: a survey[J]. IEEE Geoscience and Remote Sensing Magazine, 10, 64-90(2022).
[24] Xu Y, Wu Z B, Li J et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 1990-2000(2016).
[25] Sun W W, Liu C, Li J L et al. Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery[J]. Journal of Applied Remote Sensing, 8, 083641(2014).
[26] Li L, Li W, Qu Y et al. Prior-based tensor approximation for anomaly detection in hyperspectral imagery[J]. IEEE Transactions on Neural Networks and Learning Systems, 33, 1037-1050(2022).
Get Citation
Copy Citation Text
Luyao Li, Zhongwei Li, Leiquan Wang, Juan Li, Shunxiao Shi. Semi-Supervised Hyperspectral Anomaly Detection Based on Spatial-Spectral Background Reconstruction[J]. Laser & Optoelectronics Progress, 2023, 60(20): 2028001
Category: Remote Sensing and Sensors
Received: Oct. 8, 2022
Accepted: Nov. 29, 2022
Published Online: Oct. 13, 2023
The Author Email: Zhongwei Li (li.zhongwei@vip.163.com)