Laser & Optoelectronics Progress, Volume. 60, Issue 20, 2028001(2023)
Semi-Supervised Hyperspectral Anomaly Detection Based on Spatial-Spectral Background Reconstruction
Fig. 3. Loss architecture diagrams. (a) Potential feature layer constraint loss; (b) reconstruction loss
Fig. 6. Visual inspection maps of different methods. (a) Sandiego; (b) ABU; (c) TC-1; (d) TC-2; (e) BC
Fig. 7. ROC curves of different methods. (a) Sandiego; (b) ABU; (c) TC-1; (d) TC-2; (e) BC
Fig. 8. Background anomaly separation diagram. (a) Sandiego; (b) ABU; (c) TC-1; (d) TC-2; (e) BC
Fig. 9. Spectral reconstruction at different positions. (a) Different position distribution; (b) original spectral diagram; (c) reconstructed spectral map
Fig. 10. Visual effect images reconstructed from different batches. (a) Spectral; (b) spatial
Fig. 12. Effects of equilibrium coefficients α and β on different datasets. (a) Sandiego; (b) ABU; (c) TC-1; (d) TC-2; (e) BC
|
|
|
|
Get Citation
Copy Citation Text
Luyao Li, Zhongwei Li, Leiquan Wang, Juan Li, Shunxiao Shi. Semi-Supervised Hyperspectral Anomaly Detection Based on Spatial-Spectral Background Reconstruction[J]. Laser & Optoelectronics Progress, 2023, 60(20): 2028001
Category: Remote Sensing and Sensors
Received: Oct. 8, 2022
Accepted: Nov. 29, 2022
Published Online: Oct. 13, 2023
The Author Email: Zhongwei Li (li.zhongwei@vip.163.com)