Laser & Optoelectronics Progress, Volume. 60, Issue 20, 2028001(2023)

Semi-Supervised Hyperspectral Anomaly Detection Based on Spatial-Spectral Background Reconstruction

Luyao Li1, Zhongwei Li1、*, Leiquan Wang2, Juan Li2, and Shunxiao Shi2
Author Affiliations
  • 1College of Oceanography and Space Informatics, China University of Petroleum, Qingdao 266580, Shandong , China
  • 2College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, Shandong , China
  • show less
    Figures & Tables(16)
    Hyperspectral anomaly detection model combined with spatial-spectrum
    Flow chart of cluster generation
    Loss architecture diagrams. (a) Potential feature layer constraint loss; (b) reconstruction loss
    Loss architecture
    Filtering results in spatial domain
    Visual inspection maps of different methods. (a) Sandiego; (b) ABU; (c) TC-1; (d) TC-2; (e) BC
    ROC curves of different methods. (a) Sandiego; (b) ABU; (c) TC-1; (d) TC-2; (e) BC
    Background anomaly separation diagram. (a) Sandiego; (b) ABU; (c) TC-1; (d) TC-2; (e) BC
    Spectral reconstruction at different positions. (a) Different position distribution; (b) original spectral diagram; (c) reconstructed spectral map
    Visual effect images reconstructed from different batches. (a) Spectral; (b) spatial
    Influence of the number of clusters c on different datasets
    Effects of equilibrium coefficients α and β on different datasets. (a) Sandiego; (b) ABU; (c) TC-1; (d) TC-2; (e) BC
    • Table 1. AUC values on different datasets

      View table

      Table 1. AUC values on different datasets

      MethodSandiegoABUTC-1TC-2BC
      RX0.96000.84030.99060.99450.9997
      LRX0.87300.95340.96610.94020.9999
      LRASR0.99330.88570.98500.99560.9987
      LSMAD0.97560.91840.98030.98520.9996
      GTVLRR0.97490.89580.97730.98090.9937
      RPCA0.96730.84310.99220.99570.9995
      PTA0.98770.91760.97200.99410.9823
      Proposed method0.99750.99090.99830.99130.9996
    • Table 2. Parameter settings on different datasets

      View table

      Table 2. Parameter settings on different datasets

      MethodSandiegoABUTC-1TC-2BC
      LRX

      wout=25

      Winer=23

      wout=25

      Winer=23

      wout=15

      Winer=13

      wout=25

      Winer=23

      wout=25

      Winer=23

      LRASR

      λ=0.01

      β=0.005

      λ=0.2

      β=0.1

      λ=0.01

      β=0.005

      λ=0.001

      β=1

      λ=1

      β=0.1

      GTVLRR

      λ=0.01

      β=0.005

      γ=0.05

      λ=0.5

      β=0.2

      γ=0.02

      λ=0.01

      β=0.005

      γ=0.05

      λ=0.005

      β=0.2

      γ=0.05

      λ=0.5

      β=0.2

      γ=0.05

      PTA

      rank 1

      α=2

      β=0.05

      τ=0.0001

      μ=0.001

      rank 1

      α=2

      β=0.05

      τ=0.1

      μ=0.001

      rank 1

      α=2

      β=0.0001

      τ=0.1

      μ=0.001

      rank 1

      α=2

      β=0.05

      τ=0.1

      μ=0.001

      rank 1

      α=2

      β=0.05

      τ=0.0001

      μ=0.001

      Proposed method

      c=10

      θ=0.003

      α=1

      β=0.9

      c=15

      θ=0.005

      α=1

      β=0.9

      c=10

      θ=0.003

      α=0.9

      β=0.8

      c=10

      θ=0.005

      α=0.9

      β=0.9

      c=10

      θ=0.005

      α=0.9

      β=0.8

    • Table 3. AUC values of the eight versions

      View table

      Table 3. AUC values of the eight versions

      MethodSandiegoABUTC-1TC-2BC
      Spectral GAN + Filter0.96860.96010.96690.97050.9753
      Spectral GAN + Spatial GAN0.97790.96150.98140.98430.9854
      Spectral GAN + Spatial GAN + Filter0.98150.97880.98980.97640.9805
      FCM-1 + Spectral GAN + Filter0.96960.97360.98120.98140.9827
      FCM-1 + Spectral GAN + Spatial GAN0.97350.96660.96790.97660.9864
      FCM-1 + Spectral GAN + Spatial GAN + Filter0.97890.97890.99000.97700.9931
      FCM-1 + Spectral GAN+FCM-2 + Spatial GAN0.99110.96570.98360.98820.9899
      FCM-1 + Spectral GAN+FCM-2+ Spatial GAN+ Filter0.99750.99090.99830.99130.9996
    • Table 4. Time costs of different methods

      View table

      Table 4. Time costs of different methods

      MethodSandiegoABUTC-1TC-2BC
      RX0.03010.08990.08690.09460.0718
      LRX13.347541.558432.860241.303032.5046
      LRASR20.870939.147341.616445.917443.5895
      LSMAD5.279011.077711.811311.391110.3939
      GTVLRR274.4787296.2252191.6086136.9443317.7260
      RPCA7.024215.30047.17147.79435.5224
      PTA15.419535.569930.407832.238129.9787
      Proposed method7.36777.58196.13556.15386.3809
    Tools

    Get Citation

    Copy Citation Text

    Luyao Li, Zhongwei Li, Leiquan Wang, Juan Li, Shunxiao Shi. Semi-Supervised Hyperspectral Anomaly Detection Based on Spatial-Spectral Background Reconstruction[J]. Laser & Optoelectronics Progress, 2023, 60(20): 2028001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Oct. 8, 2022

    Accepted: Nov. 29, 2022

    Published Online: Oct. 13, 2023

    The Author Email: Zhongwei Li (li.zhongwei@vip.163.com)

    DOI:10.3788/LOP222705

    Topics