Opto-Electronic Engineering, Volume. 52, Issue 2, 240269-1(2025)
An instrument detection method for complex retinal microsurgery
[1] Ma L, Fei B W. Comprehensive review of surgical microscopes: technology development and medical applications[J]. J Biomed Opt, 26, 010901(2021).
[2] Ehlers J P, Dupps W J, Kaiser P K et al. The prospective intraoperative and perioperative ophthalmic ImagiNg with optical CoherEncE TomogRaphy (PIONEER) study: 2-year results[J]. Am J Ophthalmol, 158, 999-1007. e1(2014).
[3] Ravasio C S, Pissas T, Bloch E et al. Learned optical flow for intra-operative tracking of the retinal fundus[J]. Int J Comput Assist Radiol Surg, 15, 827-836(2020).
[4] Li Y Y, Fan J Y, Jiang T L et al. Review of the development of optical coherence tomography imaging navigation technology in ophthalmic surgery[J]. Opto-Electron Eng, 50, 220027(2023).
[5] Yang J W, Huang J J, He Y et al. Image quality optimization of line-focused spectral domain optical coherence tomography with subsection dispersion compensation[J]. Opto-Electron Eng, 51, 240042(2024).
[6] Bouget D, Allan M, Stoyanov D et al. Vision-based and marker-less surgical tool detection and tracking: a review of the literature[J]. Med Image Anal, 35, 633-654(2017).
[7] Allan M, Ourselin S, Thompson S et al. Toward detection and localization of instruments in minimally invasive surgery[J]. IEEE Trans Biomed Eng, 60, 1050-1058(2013).
[9] Sznitman R, Richa R, Taylor R H et al. Unified detection and tracking of instruments during retinal microsurgery[J]. IEEE Trans Pattern Anal Mach Intell, 35, 1263-1273(2013).
[10] Sun Y W, Pan B, Fu Y L. Lightweight deep neural network for articulated joint detection of surgical instrument in minimally invasive surgical robot[J]. J Digit Imaging, 35, 923-937(2022).
[12] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 39, 1137-1149(2017).
[14] Sarikaya D, Corso J J, Guru K A. Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection[J]. IEEE Trans Med Imaging, 36, 1542-1549(2017).
[15] Zhang B B, Wang S S, Dong L Y et al. Surgical tools detection based on modulated anchoring network in laparoscopic videos[J]. IEEE Access, 8, 23748-23758(2020).
[16] Pan X Y, Bi M R, Wang H et al. DBH-YOLO: a surgical instrument detection method based on feature separation in laparoscopic surgery[J]. Int J Comput Assist Radiol Surg, 19, 2215-2225(2024).
[17] Zhao Z J, Chen Z R, Voros S et al. Real-time tracking of surgical instruments based on spatio-temporal context and deep learning[J]. Comput Assist Surg, 24, 20-29(2019).
[20] Li H L, Li J, Wei H B et al. Slim-neck by GSConv: a lightweight-design for real-time detector architectures[J]. J Real Time Image Process, 21, 62(2024).
Get Citation
Copy Citation Text
Yuhao He, Yiwei Chen, Jinyu Fan, Yi He, Guohua Shi. An instrument detection method for complex retinal microsurgery[J]. Opto-Electronic Engineering, 2025, 52(2): 240269-1
Category: Article
Received: Nov. 20, 2024
Accepted: Jan. 15, 2025
Published Online: Apr. 27, 2025
The Author Email: