Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 10, 1399(2023)
Reservoir computing based network for few-shot image classification
[11] CHEN W Y, LIU Y C, KIRA Z et al. A closer look at few-shot classification[C](2019).
[15] HOU R B, CHANG H, MA B P et al. Cross attention network for few-shot classification[C](2019).
[17] JAEGER H. Short term memory in echo state networks[R](2002).
[20] BERTINETTO L, HENRIQUES J F, TORR P et al. Meta-learning with differentiable closed-form solvers[C](2019).
[21] ORESHKIN B N, RODRÍGUEZ P, LACOSTE A. TADAM: Task dependent adaptive metric for improved few-shot learning[C](2018).
[22] VINYALS O, BLUNDELL C, LILLICRAP T et al. Matching networks for one shot learning[C](2016).
[25] XU W J, XU Y F, WANG H J et al. Attentional constellation nets for few-shot learning[C](2021).
[32] ZHANG M L, ZHANG J H, LU Z W et al. IEPT: Instance-level and episode-level pretext tasks for few-shot learning[C](2021).
[35] TSENG H Y, LEE H Y, HUANG J B et al. Cross-domain few-shot classification via learned feature-wise transformation[C](2020).
[37] WANG Y, CHAO W L, WEINBERGER K Q et al. Revisiting nearest-neighbor classification for few-shot learning[J/OL]. arXiv(2019).
[38] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 9, 2579-2605(2008).
Get Citation
Copy Citation Text
Bin WANG, Hai LAN, Hui YU, Jie-long GUO, Xian WEI. Reservoir computing based network for few-shot image classification[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(10): 1399
Category: Research Articles
Received: Dec. 6, 2022
Accepted: --
Published Online: Oct. 25, 2023
The Author Email: Xian WEI (xian.wei@fjirsm.ac.cn)