Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 10, 1399(2023)

Reservoir computing based network for few-shot image classification

Bin WANG1, Hai LAN2, Hui YU2,3, Jie-long GUO2,3, and Xian WEI2,3、*
Author Affiliations
  • 1School of Advanced Manufacturing,Fuzhou University,Quanzhou 362200,China
  • 2Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China
  • 3Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China(Mindu Innovation Laboratory),Fuzhou 350108,China
  • show less
    Figures & Tables(11)
    Framework of few-shot image classification model based on reservoir computing
    Flowchart of the training method based on RC
    Feature distributions after the enhancement by attention mechanisms generated in different ways
    Effect of different initial values of τ on classification accuracy
    • Table 1. Classification accuracy on Cifar-FS dataset and FC100 dataset

      View table
      View in Article

      Table 1. Classification accuracy on Cifar-FS dataset and FC100 dataset

      方法骨干网络/AttnCifar-FSFC100
      5-way 1-shot5-way 5-shot5-way 1-shot5-way 5-shot
      Cp.Nets25ResNet-12/No75.40±0.2086.80±0.2043.80±0.2059.70±0.20
      TPMN26ResNet-12/No75.50±0.9087.20±0.6046.93±0.7163.26±0.74
      RFS-distill27ResNet-12/No73.90±0.8086.90±0.5044.60±0.7060.90±0.60
      MetaOptNet28ResNet-12/No72.60±0.7084.30±0.5041.10±0.6055.50±0.60
      MetaQAD29WRN-28-10/No75.83±0.8888.79±0.75--
      Centroid30ResNet-18/No--45.83±0.4859.74±0.56
      STANet13ResNet-12/Yes74.89±0.18*88.23±0.11*46.27±0.22*62.89±0.15*
      Main14ResNet-12/Yes74.36±0.45*84.13±0.78*44.54±0.3358.09±0.32
      Cro-Attention15ResNet-12/Yes75.33±0.14*87.94±0.61*45.78±0.61*62.78±0.66*
      RCFICResNet-1277.23±0.3288.91±0.1948.14±0.4164.27±0.83
      RCFICResNet-1879.44±0.4189.86±0.6850.49±0.3766.52±0.09
    • Table 2. Classification accuracy on Mini-ImageNet dataset %

      View table
      View in Article

      Table 2. Classification accuracy on Mini-ImageNet dataset %

      方法骨干网络/Attn5-way 1-shot5-way 5-shot
      DMF31ResNet-12/No67.76±0.4682.71±0.31
      IEPT32ResNet-12/No67.05±0.4482.90±0.30
      CTM33ResNet-18/No64.12±0.8280.51±0.13
      S2M234ResNet-18/No64.06±0.1880.58±0.12
      STANet13ResNet-12/Yes58.35±0.5771.07±0.39
      Main14ResNet-12/Yes64.27±0.3581.24±0.26
      Cro-Attention15ResNet-12/Yes67.19±0.5580.64±0.35
      RCFICResNet-1267.95±0.5783.15±0.33
      RCFICResNet-1869.87±0.3284.45±0.61
    • Table 3. Cross-domain

      View table
      View in Article

      Table 3. Cross-domain

      方法骨干网络5-way 1-shot5-way 5-shot
      LFWT35ResNet-1047.47±0.7566.98±0.68
      LRP36ResNet-1246.23±0.4266.58±0.39
      S-Shot37ResNet-1846.68±0.4965.56±0.70
      RCFICResNet-1248.15±0.3567.66±0.57
      RCFICResNet-1849.24±0.1969.07±0.26
    • Table 4. Effect of feature enhancement module(taking classification accuracies on Cifar-FS for example)%

      View table
      View in Article

      Table 4. Effect of feature enhancement module(taking classification accuracies on Cifar-FS for example)%

      NAOROA5-way 1-shot5-way 5-shot
      ---73.43±0.1284.34±0.36
      --76.61±0.5787.33±0.72
      --78.66±0.3887.62±0.29
      -79.44±0.4189.86±0.68
    • Table 5. Classification accuracy of attention mechanisms generated by different methods on Mini-ImageNet dataset

      View table
      View in Article

      Table 5. Classification accuracy of attention mechanisms generated by different methods on Mini-ImageNet dataset

      线性变换卷积储备池5-way 1-shot5-way 5-shot
      ---60.97±0.2279.23±0.07
      --65.27±0.3682.33±0.72
      --63.75±0.1781.62±0.29
      --69.87±0.3284.45±0.61
    • Table 6. Effect of whether using β1 and β2

      View table
      View in Article

      Table 6. Effect of whether using β1 and β2

      β2β35-way 1-shot5-way 5-shot
      --77.12±0.4187.37±0.29
      79.44±0.4189.86±0.68
    • Table 7. Effect of different internal topologies of RC

      View table
      View in Article

      Table 7. Effect of different internal topologies of RC

      拓扑结构骨干网络5-way 1-shot5-way 5-shot
      RandomResNet-1867.16±0.4480.57±0.18
      Delay lineResNet-1865.33±0.3878.95±0.39
      CyclicResNet-1866.97±0.2978.52±0.67
      WignerResNet-1868.44±0.5181.38±0.13
      RCFICResNet-1869.87±0.3284.45±0.61
    Tools

    Get Citation

    Copy Citation Text

    Bin WANG, Hai LAN, Hui YU, Jie-long GUO, Xian WEI. Reservoir computing based network for few-shot image classification[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(10): 1399

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Dec. 6, 2022

    Accepted: --

    Published Online: Oct. 25, 2023

    The Author Email: Xian WEI (xian.wei@fjirsm.ac.cn)

    DOI:10.37188/CJLCD.2022-0407

    Topics