Chinese Journal of Lasers, Volume. 48, Issue 15, 1511001(2021)

Application of Tunable Diode Laser Absorption Spectroscopy in Breath Diagnosis

Liqun Sun*, Mingli Zou, and Xuan Wang
Author Affiliations
  • Department of Precision Instruments, Tsinghua University, Beijing 100084, China
  • show less
    References(136)

    [1] Wang C, Sahay P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits[J]. Sensors, 9, 8230-8262(2009).

    [2] Selvaraj R, Vasa N J, Nagendra S M S et al. Advances in mid-infrared spectroscopy-based sensing techniques for exhaled breath diagnostics[J]. Molecules, 25, 2227(2020).

    [3] Risby T H, Solga S F. Current status of clinical breath analysis[J]. Applied Physics B, 85, 421-426(2006).

    [4] Risby T H, Tittel F K. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis[J]. Optical Engineering, 49, 111123(2010).

    [5] Cristescu S M, Mandon J, Harren F J et al. Methods of NO detection in exhaled breath[J]. Journal of Breath Research, 7, 017104(2013).

    [7] Wilson N, Pedersen S. Inflammatory markers in clinical practice[J]. American Journal of Respiratory and Critical Care Medicine, 162, S48-S51(2000).

    [8] Manne J, Sukhorukov O, Jäger W et al. Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath[J]. Applied Optics, 45, 9230-9237(2006).

    [10] Blaikie T P J, Edge J A, Hancock G et al. Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes[J]. Journal of Breath Research, 8, 046010(2014).

    [11] Kundu S K, Bruzek J A, Nair R et al. Breath acetone analyzer: diagnostic tool to monitor dietary fat loss[J]. Clinical Chemistry, 39, 87-92(1993).

    [12] Shilov V N, Iakovchenko V A, Sergienko V I. Diagnostic value of gas chromatographic study of exhaled air[J]. Klinicheskaia Laboratornaia Diagnostika, 9-10(1994).

    [13] Esterbauer H. Estimation of peroxidative damage[M]. //Wilmore D W, Carpentier Y A. Metabolic support of the critically ill patient. Update in intensive care and emergency medicine, 17, 80-91(1993).

    [14] Aboul-Enein H Y, Stefan R I, van Staden J F et al. Recent developments and applications of chemiluminescence sensors[J]. Critical Reviews in Analytical Chemistry, 30, 271-289(2000).

    [15] Privett B J, Shin J H, Schoenfisch M H. Electrochemical sensors[J]. Analytical Chemistry, 82, 4723-4741(2010).

    [16] Lambert W E, Colome S D, Wojciechowski S L. Application of end-expired breath sampling to estimate carboxyhemoglobin levels in community air pollution exposure assessments[J]. Atmospheric Environment (1967), 22, 2171-2181(1988).

    [17] Franzblau A, Levine S P, Burgess L A et al. The use of a transportable Fourier transform infrared (FTIR) spectrometer for the direct measurement of solvents in breath and ambient air-I: methanol[J]. American Industrial Hygiene Association Journal, 53, 221-227(1992).

    [18] Spagnolo V, Lewicki R, Dong L et al. Quantum-cascade-laser-based optoacoustic detection for breath sensor applications[C]. //2011 IEEE International Symposium on Medical Measurements and Applications, May 30-31, 2011, Bari, Italy., 332-335(2011).

    [19] Atkinson D B. Cavity ring-down spectroscopy: techniques and applications[J]. Journal of the American Chemical Society, 132, 4972(2010).

    [20] Dong H W, Guo R M, Cui W C et al. Cavity ring-down spectroscopy based on folded cavity[J]. Chinese Journal of Lasers, 47, 0311001(2020).

    [21] Xing S X, Chen S, Guo R M et al. Spectral absorption line-shape fitting algorithm of gaseous molecule based on cavity ring-down spectroscopy[J]. Laser & Optoelectronics Progress, 56, 193004(2019).

    [22] Kireev S V, Kondrashov A A, Shnyrev S L. Applying the diode laser spectroscopy method for high sensitivity on-line control of 13С contained in the gaseous mixture with 12С[J]. Laser Physics Letters, 13, 065702(2016).

    [23] Ghorbani R, Schmidt F M. ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes[J]. Optics Express, 25, 12743-12752(2017).

    [24] Kamat P C, Roller C B, Namjou K et al. Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer[J]. Applied Optics, 46, 3969-3957(2007).

    [25] Wang X, Jing C R, Hou K X et al. Online detection of human-exhaled end-tidal carbon dioxide using tunable semiconductor absorption spectroscopy[J]. Chinese Journal of Lasers, 47, 0311002(2020).

    [26] Fu B, Zhang C H, Lyu W H et al. Recent progress on laser absorption spectroscopy for determination of gaseous chemical species[J]. Applied Spectroscopy Reviews, 1-41(2020).

    [27] Li S G, Wei Z X, Yin Z F et al. Optical fiber gas sensor for remote detection of CH4 gas in underground mines[J]. Proceedings of SPIE, 5770, 205-212(2005).

    [28] Ku R T, Hinkley E D, Sample J O. Long-path monitoring of atmospheric carbon monoxide with a tunable diode laser system[J]. Applied Optics, 14, 854-861(1975).

    [29] Hanson R K, Kuntz P A, Kruger C H. High-resolution spectroscopy of combustion gases using a tunable ir diode laser[J]. Applied Optics, 16, 2045-2048(1977).

    [30] Li H, Farooq A, Jeffries J B et al. Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube[J]. Applied Physics B, 89, 407-416(2007).

    [31] Manninen A, Tuzson B, Looser H et al. Versatile multipass cell for laser spectroscopic trace gas analysis[J]. Applied Physics B, 109, 461-466(2012).

    [32] Arndt R. Analytical line shapes for Lorentzian signals broadened by modulation[J]. Journal of Applied Physics, 36, 2522-2524(1965).

    [33] Reid J, Labrie D. Second-harmonic detection with tunable diode lasers: comparison of experiment and theory[J]. Applied Physics B, 26, 203-210(1981).

    [34] Werle P. Spectroscopic trace gas analysis using semiconductor diode lasers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 52, 805-822(1996).

    [35] Chao X, Jeffries J B, Hanson R K. Absorption sensor for CO in combustion gases using 2.3 μm tunable diode lasers[J]. Measurement Science Technology, 20, 115201(2009).

    [36] Cassidy D T, Bonnell L J. Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 microm[J]. Applied Optics, 27, 2688-2693(1988).

    [37] Cassidy D T, Reid J. Atmospheric pressure monitoring of trace gases using tunable diode lasers[J]. Applied Optics, 21, 1185-1190(1982).

    [38] Rieker G B, Jeffries J B, Hanson R K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments[J]. Applied Optics, 48, 5546-5560(2009).

    [39] Roy A, Chakraborty A L. Intensity modulation-normalized calibration-free 1f and 2f wavelength modulation spectroscopy[J]. IEEE Sensors Journal, 20, 12691-12701(2020).

    [40] Yang C G, Mei L, Deng H et al. Wavelength modulation spectroscopy by employing the first harmonic phase angle method[J]. Optics Express, 27, 12137-12146(2019).

    [41] Yanagawa T, Saito S, Yamamoto Y. Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines[J]. Applied Physics Letters, 45, 826-828(1984).

    [42] Dong L, Yin W B, Ma W G et al. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line[J]. Measurement Science and Technology, 18, 1447-1452(2007).

    [43] Miller J B, Bokdam M, McVeagh P et al. Variability of breath hydrogen excretion in breast-fed infants during the first three months of life[J]. The Journal of Pediatrics, 121, 410-413(1992).

    [44] Rumessen J J, Nordgaard-Andersen I, Gudmand-Høyer E. Carbohydrate malabsorption: quantification by methane and hydrogen breath tests[J]. Scandinavian Journal of Gastroenterology, 29, 826-832(1994).

    [45] Coburn R F, Williams W J, Kahn S B. Endogenous carbon monoxide production in patients with hemolytic anemia[J]. The Journal of Clinical Investigation, 45, 460-468(1966).

    [46] Yamaya M, Sekizawa K, Ishizuka S et al. Increased carbon monoxide in exhaled air of subjects with upper respiratory tract infections[J]. American Journal of Respiratory and Critical Care Medicine, 158, 311-314(1998).

    [47] Zayasu K, Sekizawa K, Okinaga S et al. Increased carbon monoxide in exhaled air of asthmatic patients[J]. American Journal of Respiratory and Critical Care Medicine, 156, 1140-1143(1997).

    [48] Stevenson D K, Vreman H J, Wong R J et al. Carbon monoxide and bilirubin production in neonates[J]. Seminars in Perinatology, 25, 85-93(2001).

    [49] Maziak W, Loukides S, Culpitt S et al. Exhaled nitric oxide in chronic obstructive pulmonary disease[J]. American Journal of Respiratory and Critical Care Medicine, 157, 998-1002(1998).

    [50] Kharitonov S A, Yates D, Barnes P J. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections[J]. European Respiratory Journal, 8, 295-297(1995).

    [51] Mirvish S S. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC[J]. Cancer Letters, 93, 17-48(1995).

    [52] Bayrakli I, Turkmen A, Akman H et al. Applications of external cavity diode laser-based technique to noninvasive clinical diagnosis using expired breath ammonia analysis: chronic kidney disease, epilepsy[J]. Journal of Biomedical Optics, 21, 087004(2016).

    [53] Spacek L A, Mudalel M, Tittel F et al. Clinical utility of breath ammonia for evaluation of ammonia physiology in healthy and cirrhotic adults[J]. Journal of Breath Research, 9, 047109(2015).

    [54] Marchand L L, Wilkens L R, Harwood P et al. Use of breath hydrogen and methane as markers of colonic fermentation in epidemiologic studies: circadian patterns of excretion[J]. Environmental Health Perspectives, 98, 199-202(1992).

    [55] Schneider C, Wutzke K D, Dbritz J. Methane breath tests and blood sugar tests in children with suspected carbohydrate malabsorption[J]. Scientific Reports, 10, 18972(2020).

    [56] Stolarek R, Bialasiewicz P, Krol M et al. Breath analysis of hydrogen peroxide as a diagnostic tool[J]. Clinica Chimica Acta, 411, 1849-1861(2010).

    [57] Rysz J, Kasielski M, Apanasiewicz J et al. Increased hydrogen peroxide in the exhaled breath of uraemic patients unaffected by haemodialysis[J]. Nephrology Dialysis Transplantation, 19, 158-163(2004).

    [58] Weitz Z W, Birnbaum A J, Skosey J L et al. High breath pentane concentrations during acute myocardial infarction[J]. The Lancet, 337, 933-935(1991).

    [59] Olopade C O, Zakkar M, Swedler W I et al. Exhaled pentane levels in acute asthma[J]. Chest, 111, 862-865(1997).

    [60] Habib M P, Clements N C, Garewal H S. Cigarette smoking and ethane exhalation in humans[J]. American Journal of Respiratory and Critical Care Medicine, 151, 1368-1372(1995).

    [61] Guilluy R, Billion-Rey F, Pachiaudi C et al. On-line purification and carbon-13 isotopic analysis of carbon dioxide in breath: evaluation of on-line gas chromatography-isotope ratio mass spectrometry[J]. Analytica Chimica Acta, 259, 193-202(1992).

    [62] Taucher J, Lagg A, Hansel A et al. Methanol in human breath[J]. Alcoholism: Clinical and Experimental Research, 19, 1147-1150(1995).

    [63] Graham D Y, Evans D J, Jr, Alpert L C et al. Campylobacter pylori detected noninvasively by the 13C-urea breath test[J]. The Lancet, 329, 1174-1177(1987).

    [64] Haisch M, Hering P, Schadewaldt P et al. Biomedical application of an isotope selective nondispersive infrared spectrometer for 13CO2 and 12CO2 concentration measurements in breath samples[J]. Isotopenpraxis Isotopes in Environmental and Health Studies, 30, 253-257(1994).

    [65] Bruno M J, Hoek F J, Delzenne B et al. Simultaneous assessments of exocrine pancreatic function by cholesteryl-[ 14C]octanoate breath test and measurement of plasma p-aminobenzoic acid[J]. Clinical Chemistry, 41, 599-604(1995).

    [66] Kamboures M A, Blake D R, Cooper D M et al. Breath sulfides and pulmonary function in cystic fibrosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 15762-15767(2005).

    [67] Phillips M, Gleeson K, Hughes J M B et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study[J]. The Lancet, 353, 1930-1933(1999).

    [68] Preti G, Labows J N, Kostelc J G et al. Analysis of lung air from patients with bronchogenic carcinoma and controls using gas chromatography-mass spectrometry[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 432, 1-11(1988).

    [69] Gordon S M, Szidon J P, Krotoszynski B K et al. Volatile organic compounds in exhaled air from patients with lung cancer[J]. Clinical Chemistry, 31, 1278-1282(1985).

    [70] Masiyano D, Hodgkinson J, Tatam R P. Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements[J]. Applied Physics B, 90, 279-288(2008).

    [71] Delgado J K. Amount of carbon dioxide fraction determination by TDLAS: evidences for a potential primary method directly applied in gas analysis[D](2006).

    [74] Morthier G, Vankwikelberge P. Handbook of distributed feedback laser diodes[M](2013).

    [75] Mason B, Fish G A, DenBaars S P et al. Widely tunable sampled grating DBR laser with integrated electroabsorption modulator[J]. IEEE Photonics Technology Letters, 11, 638-640(1999).

    [76] Ye C Y. Tunable external cavity diode lasers[M](2004).

    [77] Lan L J, Chen J, Zhao X X et al. VCSEL-based atmospheric trace gas sensor using first harmonic detection[J]. IEEE Sensors Journal, 19, 4923-4931(2019).

    [78] Hofstetter D, Beck M, Aellen T et al. Continuous wave operation of a 9.3 μm quantum cascade laser on a Peltier cooler[J]. Applied Physics Letters, 78, 1964-1966(2001).

    [79] Horn D, Pimentel G C. 2.5-km low-temperature multiple-reflection cell[J]. Applied Optics, 10, 1892-1898(1971).

    [80] White J U. Long optical paths of large aperture[J]. Journal of the Optical Society of America, 32, 285-288(1942).

    [81] Stepanov E V, Zyrianov P V, Miliaev V A. Single-breath NO detection with tunable diode lasers for pulmonary disease diagnosis[J]. Proceedings of SPIE, 3829, 103-109(1999).

    [82] Herriott D, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers[J]. Applied Optics, 3, 523-526(1964).

    [83] Knox D A, King A K, McNaghten E D et al. Novel utilisation of a circular multi-reflection cell applied to materials ageing experiments[J]. Applied Physics B, 119, 55-64(2015).

    [84] Mangold M, Tuzson B, Hundt M et al. Circular paraboloid reflection cell for laser spectroscopic trace gas analysis[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 33, 913-919(2016).

    [85] Doussin J F, Dominique R, Patrick C. Multiple-pass cell for very-long-path infrared spectrometry[J]. Applied Optics, 38, 4145-4150(1999).

    [86] Chen K X. Small scale multi path differential absorption spectroscopy for trace gas detection[D](2010).

    [87] Herriott D R, Schulte H J. Folded optical delay lines[J]. Applied Optics, 4, 883-889(1965).

    [89] Yang Z, Guo Y, Ming X S et al. Generalized optical design of the double-row circular multi-pass cell[J]. Sensors, 18, 2680(2018).

    [90] Yang Z, Zou M L, Sun L Q. Generalized optical design of the multiple-row circular multi-pass cell with dense spot pattern[J]. Optics Express, 27, 32883-32891(2019).

    [91] Robinson I, Butcher H L, MacLeod N A et al. Hollow waveguide integrated laser spectrometer for 13CO2/ 12CO2 analysis[J]. Optics Express, 27, 35670-35688(2019).

    [92] Tütüncü E, Nägele M, Becker S et al. Advanced photonic sensors based on interband cascade lasers for real-time mouse breath analysis[J]. ACS Sensors, 3, 1743-1749(2018).

    [93] Kelly J F, Sams R L, Blake T A et al. A capillary absorption spectrometer for stable carbon isotope ratio ( 13C/ 12C) analysis in very small samples[J]. The Review of Scientific Instruments, 83, 023101(2012).

    [94] Banik G D, Mizaikoff B. Exhaled breath analysis using cavity-enhanced optical techniques: a review[J]. Journal of Breath Research, 14, 043001(2020).

    [95] Stacewicz T, Bielecki Z, Wojtas J et al. Detection of disease markers in human breath with laser absorption spectroscopy[J]. Opto-Electronics Review, 24, 82-94(2016).

    [98] Wang C J, Scherrer S T, Hossain D. Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near-infrared spectral regions: potential for development of a breath analyzer[J]. Applied Spectroscopy, 58, 784-791(2004).

    [99] Cernat R, Matei C, Bratu A M et al. Laser photoacoustic spectroscopy method for measurements of trace gas concentration from human breath[J]. Romanian Reports in Physics, 62, 610-616(2010).

    [100] Silva M L, Wainner R T, Sonnenfroh D M et al. Mid-infrared detection of trace biogenic species using compact QCL-based integrated cavity output spectroscopy (ICOS)[J]. Proceedings of SPIE, 6010, 60100E(2005).

    [101] Taucher J, Lagg A, Hansel A et al. Methanol in human breath[J]. Alcoholism Clinical & Experimental Research, 19, 1147-1150(1995).

    [103] Walker M M, Hirschl A M, Gummett P A. The European 13C-urea breath test for the detection of Helicobacter pylori[J]. European Journal of Gastroenterol & Hepatology, 3, 915-921(1991).

    [104] Crotty F V, Stocki M, Knight J D et al. Improving the accuracy and sensitivity of isotope ratio mass spectrometry for δ13C and δ15N values in very low mass samples for ecological studies[J]. Soil Biology and Biochemistry, 65, 75-77(2013).

    [105] Modak A S. Stable isotope breath tests in clinical medicine: a review[J]. Journal of Breath Research, 1, 014003(2007).

    [107] Cooper D E, Martinelli R U, Carlisle C B et al. Measurement of 12CO2∶ 13CO2 ratios for medical diagnostics using 1.6-μm InGaAsP/InP distributed feedback semiconductor diode lasers[J]. Applied Optics, 32, 6727-6731(1993).

    [108] Stepanov E V, Zyrianov P V, Miliaev V A et al. 13CO2/ 12CO2 ratio analysis in exhaled air by lead-salt tunable diode lasers for noninvasive diagnostics in gastroenterology[J]. Proceedings of SPIE, 3829, 68-76(1999).

    [109] Andreev S N, Mironchuk E S, Nikolaev I V et al. High precision measurements of the 13CO2/ 12CO2 isotope ratio at atmospheric pressure in human breath using a 2 μm diode laser[J]. Applied Physics B, 104, 73-79(2011).

    [110] Kasyutich V L, Martin P A. 13CO2/ 12CO2 isotopic ratio measurements with a continuous-wave quantum cascade laser in exhaled breath[J]. Infrared Physics & Technology, 55, 60-66(2012).

    [111] Zhou T, Wu T, Wu Q et al. Real-time measurement of CO2 isotopologue ratios in exhaled breath by a hollow waveguide based mid-infrared gas sensor[J]. Optics Express, 28, 10970-10980(2020).

    [112] Wu L Y, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications[J]. Pharmacological Reviews, 57, 585-630(2005).

    [113] Nikberg I I, Murashko V A, Leonenko I N. Carbon monoxide concentration in the air exhaled by the healthy and the ill[J]. Vrachebnoe Delo, 12, 112-114(1972).

    [114] Ryter S W, Sethi J M. Exhaled carbon monoxide as a biomarker of inflammatory lung disease[J]. Journal of Breath Research, 1, 026004(2007).

    [115] Antus B, Horváth I. Exhaled nitric oxide and carbon monoxide in respiratory diseases[J]. Journal of Breath Research, 1, 024002(2007).

    [116] Horváth I, Donnelly L E, Kiss A et al. Raised levels of exhaled carbon monoxide are associated with an increased expression of heme oxygenase-1 in airway macrophages in asthma: a new marker of oxidative stress[J]. Thorax, 53, 668-672(1998).

    [117] Paredi P, Shah P L, Montuschi P et al. Increased carbon monoxide in exhaled air of patients with cystic fibrosis[J]. Thorax, 54, 917-920(1999).

    [118] Zetterquist W, Marteus H, Johannesson M et al. Exhaled carbon monoxide is not elevated in patients with asthma or cystic fibrosis[J]. European Respiratory Journal, 20, 92-99(2002).

    [122] Stepanov E V, Zyrianov P V, Miliaev V A et al. Endogenous CO monitoring in exhalation with tunable diode lasers: applications to clinical and biomedical diagnostics[J]. Proceedings of SPIE, 3829, 77-87(1999).

    [123] Moeskops B W M, Naus H, Cristescu S M et al. Quantum cascade laser-based carbon monoxide detection on a second time scale from human breath[J]. Applied Physics B, 82, 649-654(2006).

    [124] Pakmanesh N, Cristescu S M, Ghorbanzadeh A et al. Quantum cascade laser-based sensors for the detection of exhaled carbon monoxide[J]. Applied Physics B, 122, 1-9(2016).

    [125] Silkoff P E. Nasal nitric oxide: clue to a diagnosis of ciliary dyskinesia[J]. Chest, 126, 1013-1014(2004).

    [126] Cristescu S M, Marchenko D, Mandon J et al. Spectroscopic monitoring of NO traces in plants and human breath: applications and perspectives[J]. Applied Physics B, 110, 203-211(2013).

    [127] Ghorbani R, Schmidt F M. Real-time breath gas analysis of CO and CO2 using an EC-QCL[J]. Applied Physics B, 123, 1-11(2017).

    [128] Manna A, Caffarelli C, Varini M et al. Clinical application of exhaled nitric oxide measurement in pediatric lung diseases[J]. Italian Journal of Pediatrics, 38, 74(2012).

    [129] Silkoff P E, Caramori M, Tremblay L et al. Exhaled nitric oxide in human lung transplantation. A noninvasive marker of acute rejection[J]. American Journal of Respiratory and Critical Care Medicine, 157, 1822-1828(1998).

    [134] Khosrow N, Chad R, James J et al. Exhaled nitric oxide measured using mid-infrared spectroscopy[C]. //Proceedings of the 32 nd International Conference on Environmental Systems CD-ROM, July 15-18, 2002, San Antonio, Texas(2002).

    [135] Menzel L, Kosterev A A, Curl R F et al. Spectroscopic detection of biological NO with a quantum cascade laser[J]. Applied Physics B, 72, 859-863(2001).

    [136] Roller C, Namjou K, Jeffers J D et al. Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation[J]. Applied Optics, 41, 6018-6029(2002).

    [137] Jeffers J D, Roller C B, Namjou K et al. Tunable laser spectroscopy measurement of exhaled nitric oxide: effect of flow rate[C]. //Laser Applications to Chemical and Environmental Analysis 2004, February 9, 2004, Annapolis, Maryland, United States, TuB3(2004).

    [138] Shorter J H, Nelson D D, McManus J B et al. Multicomponent breath analysis with infrared absorption using room-temperature quantum cascade lasers[J]. IEEE Sensors Journal, 10, 76-84(2010).

    [139] Mandon J, Högman M, Merkus P J F M et al. Quantum cascade laser for breath analysis: application to nitric oxide monitoring[C]. //Laser Applications to Chemical, Security and Environmental Analysis 2012, January 29-February 1, 2012, San Diego, California, United States, LM3B, 6(2012).

    [140] Kyung C M. Smart sensors for health and environment monitoring[M](2015).

    [141] Salehi S, Nikan E, Khodadadi A A et al. Highly sensitive carbon nanotubes-SnO2 nanocomposite sensor for acetone detection in diabetes mellitus breath[J]. Sensors & Actuators B Chemical, 205, 261-267(2014).

    [142] Wang Z, Wang C. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements[J]. Journal of Breath Research, 7, 037109(2013).

    [146] Xia J B, Zhu F, Kolomenskii A A et al. Sensitive acetone detection with a mid-IR interband cascade laser and wavelength modulation spectroscopy[J]. OSA Continuum, 2, 640-654(2019).

    [147] Nadeem F, Mandon J, Khodabakhsh A et al. Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser[J]. Sensors, 18, 2050(2018).

    [148] Reyes-Reyes A, Horsten R C, Urbach H P et al. Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy[J]. Analytical Chemistry, 87, 507-512(2015).

    [149] Schwarm K K, Strand C L, Miller V A et al. Calibration-free breath acetone sensor with interference correction based on wavelength modulation spectroscopy near 8.2 μm[J]. Applied Physics B, 126, 1-10(2019).

    Tools

    Get Citation

    Copy Citation Text

    Liqun Sun, Mingli Zou, Xuan Wang. Application of Tunable Diode Laser Absorption Spectroscopy in Breath Diagnosis[J]. Chinese Journal of Lasers, 2021, 48(15): 1511001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: spectroscopy

    Received: Mar. 16, 2021

    Accepted: May. 24, 2021

    Published Online: Aug. 5, 2021

    The Author Email: Liqun Sun (sunlq@mail.tsinghua.edu.cn)

    DOI:10.3788/CJL202148.1511001

    Topics