Remote Sensing Technology and Application, Volume. 40, Issue 4, 835(2025)
Research Progress on On-orbit Calibration of Ultraviolet Hyperspectral Atmospheric Composition Satellite Sensors
[1] [1] European Space Agency. Copernicus sentinels and 5 mission requirements traceability document[R]. Noordwijk: European Space Agency, 2022.
[2] [2] INGMANN P, VEIHELMANN B, LANGEN J,et al. Requirements for the GMES atmosphere service and ESA's implementation concept: Sentinels-4 /-5 and-5p[J]. Remote Sensing of Environment, 2012, 120: 58-69. DOI: 10.1016/j.rse.2012.01.023
[3] [3] GARANE K, KOUKOULI M E, VERHOELST T,et al. TROPOMI/S5P total ozone column data: Global ground-based validation and consistency with other satellite missions[J]. Atmospheric Measurement Techniques, 2019, 12(10): 5263-5287. DOI: 10.5194/amt-12-5263-2019
[4] [4] ORFANOZ-CHEUQUELAF A, ROZANOV A, WEBER M,et al. Total ozone column from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) measurements using the broadband Weighting Function Fitting Approach(WFFA)[J]. Atmospheric Measurement Techniques, 2021, 14(8): 5771-5789. DOI: 10.5194/amt-14-5771-2021
[5] [5] FIOLETOV V, MCLINDEN C A, GRIFFIN D,et al. Anthropogenic and volcanic point source SO2 emissions derived from TROPOMI on board Sentinel-5 Precursor: First results[J]. Atmospheric Chemistry and Physics, 2020, 20(9): 5591-5607. DOI: 10.5194/acp-20-5591-2020
[6] [6] VERHOELST T, COMPERNOLLE S, PINARDI G,et al. Ground-based validation of the Copernicus Sentinel-5p tropomi NO2 measurements with the ndacc zsl-doas, max-doas and Pandonia global networks[J]. Atmospheric Measurement Techniques, 2021, 14(1): 481-510. DOI: 10.5194/amt-14-481-2021
[9] [9] NASA Goddard Space Flight Center. Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide[R]. Greenbelt: NASA Goddard Space Flight Center, 1996.
[10] [10] NASA Goddard Space Flight Center. OMI Total Ozone Algorithm Theoretical Basis Document Volume II[R]. Greenbelt: NASA Goddard Space Flight Center, 2006.
[11] [11] WANG Q, WANG Y M, XU N,et al. Preflight spectral calibration of the ozone monitoring suite-nadir on FengYun 3F satellite[J]. Remote Sensing, 2024, 16(9): 1538. DOI: 10.3390/rs16091538
[12] [12] ZHAO M J, SI F Q, WANG Y,et al. First year on-orbit calibration of the Chinese environmental trace gas monitoring instrument onboard GaoFen-5[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8531-8540. DOI: 10.1109/TGRS.2020.2988573
[13] [13] LI Z F, ZHAO F C, LI Y,et al. Ozone Monitoring Spectrometer-Limb observation (OMSL) on-orbit polarization correction for atmospheric radiation measurements[J]. Measurement, 2024, 234: 114820. DOI: 10.1016/j.measurement.2024.114820
[14] [14] JAROSS G, BHARTIA P K, CHEN G,et al. OMPS Limb Profiler instrument performance assessment[J]. Journal of Geophysical Research (Atmospheres), 2014, 119(7): 4399-4412. DOI: 10.1002/2013JD020482
[15] [15] PAN C H, YAN B H, CAO C Y,et al. Performance of OMPS nadir profilers' sensor data records[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6885-6893. DOI: 10.1109/TGRS.2020.3026586
[16] [16] KLEIPOOL Q, LUDEWIG A, BABI L,et al. Pre-launch calibration results of the TROPOMI payload on-board the Sentinel-5 Precursor satellite[J]. Atmospheric Measurement Techniques, 2018, 11(12): 6439-6479. DOI: 10.5194/amt-11-6439-2018
[17] [17] ERIK SCHENKEVELD V M, JAROSS G, MARCHENKO S,et al. In-flight performance of the ozone monitoring instrument[J]. Atmospheric Measurement Techniques, 2017, 10(5): 1957-1986. DOI: 10.5194/amt-10-1957-2017
[18] [18] DOBBER M, STAMMES P, LEVELT P,et al. In-flight calibration of GOME-2 level-1 data using the ozone monitoring instrument[C]//Proceedings of Proceedings of the 1st EPS/MetOp RAO Workshop, May 15-17 2006. Frascati: ESA bulletin, 2006.
[19] [19] OTTER G, DIJKHUIZEN N, VOSTEEN A,et al. Radiometric calibration of the GOME-2 instrument[C]//3rd International Symposium of Space Optical Instruments and Applications, Beijing, June 26-29 2017.Berlin: Springer, c2017.
[20] [20] MUNRO R, EISINGER M, ANDERSON C,et al. GOME-2 on MetOp[C]// Atmospheric Science Conference, Frascati, May 8-12, 2006.European Space Agency, 2006.
[21] [21] MUNRO R, LANG R, KLAES D,et al. The GOME-2 instrument on the Metop series of satellites: Instrument design, calibration, and level 1 data processing - an overview[J]. Atmospheric Measurement Techniques Discussions, 2015, 8(8): 8645-8700. DOI: 10.5194/amtd-8-8645-2015
[22] [22] Institute of remote sensing, University of Bremen. GOME2 on MetOpFollow-on analysis of GOME2 in orbit degradation[R]. Germany: University of Bremen, 2015.
[23] [23] Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management, Sentinel-5P TROPOMI ATBD Ozone Profile[R]. Netherlands: KNMI, 2021.
[24] [24] Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management, Sentinel-5P TROPOMI ATBD UV Aerosol Index[R]. Netherlands: KNMI, 2022.
[25] [25] Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management, Sentinel-5P TROPOMI ATBD Clouds[R]. Netherlands: KNMI, 2021.
[26] [26] ULRICH P, JOCHEN S. 2008. Differential Optical Absorption Spectroscopy[M]. Berlin Heidelberg : Springer, 2008: 135-155.
[27] [27] GALLI A, GUERLET S, BUTZ A,et al. The impact of spectral resolution on satellite retrieval accuracy of CO2 and CH4[J]. Atmospheric Measurement Techniques, 2014, 7(4): 1105-1119. DOI: 10.5194/amt-7-1105-2014
[28] [28] CHANDER G, MARKHAM B L, HELDER D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009, 113(5): 893-903. DOI: 10.1016/j.rse.2009.01.007
[29] [29] YANG Z D, ZHEN Y Q, YIN Z S,et al. Laboratory spectral calibration of the TanSat atmospheric carbon dioxide grating spectrometer[J]. Geoscientific Instrumentation, Methods and Data Systems, 2018, 7(3): 245-252. DOI: 10.5194/gi-7-245-2018
[31] [31] LUDEWIG A, KLEIPOOL Q, BARTSTRA R,et al. Inflight calibration results of the TROPOMI payload on board the Sentinel-5 Precursor satellite[J]. Atmospheric Measurement Techniques, 2020, 13(7): 3561-3580. DOI: 10.5194/amt-13-3561-2020
[32] [32] ORDING B, LUDEWIG A, TEN BLOEMENDAL D,et al. Results of the tropomi calibration campaign[C]//Proceedings of the International Conference on Space Optics — ICSO 2016. SPIE, 2017: 103. DOI: 10.1117/12.2296118
[33] [33] SUN K, LIU X, NOWLAN C R,et al. Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements[J]. Atmospheric Measurement Techniques, 2017, 10(3): 939-953. DOI: 10.5194/amt-10-939-2017
[34] [34] XU N, WU P, MA G,et al. In-flight spectral response function retrieval of a multispectral radiometer based on the functional data analysis technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5604210. DOI: 10.1109/TGRS.2021.3073097
[35] [35] CEBULA R P, PARK H, HEATH D F. Characterization of the nimbus-7 SBUV radiometer for the long-term monitoring of stratospheric ozone[J]. Journal of Atmospheric and Oceanic Technology, 1988, 5(2): 215-227. DOI: 10.1175/1520-0426(1988)0052.0.co;2
[36] [36] FRERICK J, BOVENSMANN H, NOEL Set al. SCIAMACHY on-ground/in-flight calibration, performance verification, and monitoring concepts[J]. Proceedings of SPIE, 1997, 3117. DOI: 10.1117/12.283807
[37] [37] OTTER G, DIJKHUIZEN N, VOSTEEN A,et al. Radiometric calibration of the GOME-2 instrument[M].3rd International Symposium of Space Optical Instruments and Applications. Cham: Springer International Publishing, 2017: 493-504. DOI: 10.1007/978-3-319-49184-4_48
[38] [38] VAN GEFFEN J H G M, VAN OSS R F. Wavelength calibration of spectra measured by the Global Ozone Monitoring Experiment by use of a high-resolution reference spectrum[J]. Applied Optics, 2003, 42(15): 2739-2753. DOI: 10.1364/ao.42.002739[PubMed]
[39] [39] COLDEWEY-EGBERS M, SLIJKHUIS S, ABERLE B,et al. The global ozone monitoring experiment: Review of inflight performance and new reprocessed 1995-2011 level 1 product[J]. Atmospheric Measurement Techniques, 2018, 11(9): 5237-5259. DOI: 10.5194/amt-11-5237-2018
[40] [40] HAHNE A.The Global Ozone Monitoring Experiment[EB/OL].(1997-06-01)[2022-05-13]https://earth.esa.int/eogateway/documents/20142/37627/The%20Global%20Ozone%20Monitoring%20Experiment%20%28GOME%29.
[41] [41] GORDON I E, ROTHMAN L S, HARGREAVES R J,et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277: 107949. DOI: 10.1016/j.jqsrt.2021.107949
[42] [42] CODDINGTON O M, RICHARD E C, HARBER D,et al. The TSIS-1 hybrid solar reference spectrum[J]. Geophysical Research Letters, 2021, 48(12): e2020GL091709. DOI: 10.1029/2020GL091709[PubMed]
[43] [43] DOBBER M, VOORS R, DIRKSEN R,et al. The high-resolution solar reference spectrum between 250 and 550 nm and its application to measurements with the ozone monitoring instrument[J]. Solar Physics, 2008, 249(2): 281-291. DOI: 10.1007/s11207-008-9187-7
[44] [44] ZHAO F, LIU C, CAI Z N,et al. Ozone profile retrievals from TROPOMI: Implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China[J]. Science of The Total Environment, 2021, 764: 142886. DOI: 10.1016/j.scitotenv.2020.142886
[45] [45] CHANCE K, KURUCZ R L. An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(9): 1289-1295. DOI: 10.1016/j.jqsrt.2010.01.036
[46] [46] LEVELT P F, VAN DEN OORD G, DOBBER M,et al. Ozone monitoring instrument flight-model on-ground and inflight calibration[C]//Proceedings of the International Conference on Space Optics — ICSO 2004. SPIE, 2017: 61. DOI: 10.1117/12.2308017
[47] [47] MERONI M, BUSETTO L, GUANTER L,et al. Characterization of fine resolution field spectrometers using solar Fraunhofer lines and atmospheric absorption features[J]. Applied Optics, 2010, 49(15): 2858-2871. DOI: 10.1364/AO.49.002858[PubMed]
[48] [48] CHANCE K. Analysis of BrO measurements from the global ozone monitoring experiment[J]. Geophysical Research Letters, 1998, 25(17): 3335-3338. DOI: 10.1029/98gl52359
[49] [49] LIU X, BHARTIA P K, CHANCE K,et al. Ozone profile retrievals from the ozone monitoring instrument[J]. Atmospheric Chemistry & Physics, 2010, 10(5): 2521-2537. DOI: 10.5194/acp-10-2521-201010.5194/acpd-9-22693-2009
[50] [50] LIU X, CHANCE K, SIORIS C E,et al. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation[J]. Journal of Geophysical Research (Atmospheres), 2005, 110(D20): D20307. DOI: 10.1029/2005JD006240
[51] [51] VOORS R, DOBBER M, DIRKSEN R,et al. Method of calibration to correct for cloud-induced wavelength shifts in the Aura satellite's Ozone Monitoring Instrument[J]. Applied Optics, 2006, 45(15): 3652. DOI: 10.1364/ao.45.003652
[52] [52] Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management, Algorithm theoretical basis document for the TROPOMI L01b data processor[R]. Netherlands: KNMI, 2021.
[53] [53] GREEN R O. Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum[J]. Applied Optics, 1998, 37(4): 683-690. DOI: 10.1364/ao.37.000683
[55] [55] ZHANG C X, LIU C, WANG Y,et al. Preflight evaluation of the performance of the Chinese Environmental trace gas Monitoring Instrument(EMI) by spectral analyses of nitrogen dioxide[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3323-3332. DOI: 10.1109/TGRS.2018.2798038
[56] [56] DIRKSEN R, DOBBER M, VOORS R,et al. Prelaunch characterization of the ozone monitoring instrument transfer function in the spectral domain[J]. Applied Optics, 2006, 45(17): 3972-3981. DOI: 10.1364/ao.45.003972[PubMed]
[57] [57] BEIRLE S, LAMPEL J, LEROT C,et al. Parameterizing the instrumental spectral response function and its changes by a super-Gaussian and its derivatives[J]. Atmospheric Measurement Techniques, 2017, 10(2): 581-598. DOI: 10.5194/amt-10-581-2017
[58] [58] Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management, S5P Mission Performance Centre Level 1b Readme[R]. Netherlands: KNMI, 2023.
[59] [59] DOBBER M, DIRKSEN R, LEVELT P,et al. Ozone monitoring instrument in-flight performance and calibration[C]//International Conference on Space Optics.Noordwijk, June 27-30 2006.Netherlands: SPIE press, 2006.
[60] [60] RDIGER L, MUNRO R, LIVSCHITZ Y,et al. GOME-2 Level 1B Operational Product Validation Status[EB/OL]. [2024-07-15]. https://www-cdn.eumetsat.int/files/2020-04/pdf_conf_p_s11_45_lang_p.pdf.
[61] [61] O'DELL C W, DAY J O, POLLOCK R,et al. Preflight radiometric calibration of the orbiting carbon observatory[J].IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2438-2447. DOI: 10.1109/TGRS.2010.2090887
[62] [62] XIONG X X, BARNES W L, CHIANG K,et al. Status of aqua MODIS on-orbit calibration and characterization[C]//Proceedings of the Sensors, Systems, and Next-Generation Satellites VIII. SPIE, 2004: 317.. DOI: 10.1117/12.564940
[63] [63] SAKUMA F, BRUEGGE C J, RIDER D,et al. OCO/GOSAT preflight cross-calibration experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 585-599. DOI: 10.1109/TGRS.2009.2026050
[65] [65] ZHANG Z Y, CHEN H Y, HUANG W X,et al. High accuracy solar diffuser BRDF measurement for on-board calibration in the solar reflective band[J]. Remote Sensing, 2023, 15(15): 3783. DOI: 10.3390/rs15153783
[66] [66] KOWALEWSKI M G, JAROSS G, CEBULA R P,et al. Evaluation of the Ozone Monitoring Instrument's pre-launch radiometric calibration using in-flight data[C]//Proceedings of the Earth Observing Systems X. SPIE, 2005: 58820Y.. DOI: 10.1117/12.619282
[67] [67] DOBBER M R, DIRKSEN R J, LEVELT P F,et al. Ozone monitoring instrument calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1209-1238. DOI: 10.1109/TGRS.2006.869987
[68] [68] DIRKSEN R, DOBBER M, LEVELT P,et al. The onground calibration of the ozone monitoring instrument from a scientific point of view[C]//Proceedings of the Sensors, Systems, and Next-Generation Satellites VII. SPIE, 2004: 400.. DOI: 10.1117/12.511484
[69] [69] KIEFFER H H. Photometric stability of the lunar surface[J].Icarus, 1997, 130(2): 323-327. DOI: 10.1006/icar.1997.5822
[70] [70] URABE T, XIONG X X, HASHIGUCHI T,et al. Lunar calibration inter-comparison of SGLI, MODIS and VIIRS[C]//Proceedings of the IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019: 8481-8484. DOI: 10.1109/IGARSS.2019.8897892
[71] [71] STONE T C, KIEFFER H H. Assessment of uncertainty in ROLO lunar irradiance for on-orbit calibration[C]//Proceedings of the Earth Observing Systems IX. SPIE, 2004: 300.. DOI: 10.1117/12.560236
[72] [72] KRIJGER M. Development of an alternative hyperspectral moon phase reddening model[EB/OL]. (2019-10-10)[2022-05-10]. https://www-cdn.eumetsat.int/files/2021-02/ESS-AMM-RP-001-Rev5_LunarModel_FINAL_EUMETSATwebsite.pdf
[73] [73] TANZI C P, SNEL R, HASEKAMPAND O,et al. Degradation of UV earth albedo observations by GOME[DB/MT].(2000-11-09)[2023-01-05]. https://api.semanticscholar.org/CorpusID:17073286
[74] [74] TAKAHASHI M. Algorithm Theoretical Basis Document(ATBD) for GSICS Infrared Inter-Calibration of Imagers on MTSAT-1R/-2 and Himawari-8/-9 using AIRS and IASI Hyperspectral Observations[EB/OL].(2021-05-30) [2023-10-24] https://www.data.jma.go.jp/mscweb/data/monitoring/gsics/ir/ATBD_for_JMA_Demonstration_GSICS_Inter-Calibration_of_MTSAT_Himawari-AIRSIASI.pdf
[75] [75] HEWISON T J. An evaluation of the uncertainty of the GSICS SEVIRI-IASI intercalibration products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1171-1181. DOI: 10.1109/TGRS.2012.2236330
[76] [76] DOELLING D R, MORSTAD D L, BHATT Ret al. Algorithm Theoretical Basis Document (ATBD) for Deep Convective Cloud (DCC) technique of calibrating GEO sensors with Aqua-MODIS for GSICS[EB/OL].(2011-08-19)[2022-09-05] http://gsics.atmos.umd.edu/pub/Development/AtbdCentral/GSICS_ATBD_DCC_NASA_2011_09.pdf
[77] [77] CHANDER G, MISHRA N, HELDER D L,et al. Applications of Spectral Band Adjustment Factors(SBAF) for cross-calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1267-1281. DOI: 10.1109/TGRS.2012.2228007
[78] [78] CHANDER G, HEWISON T J, FOX N,et al. Overview of intercalibration of satellite instruments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1056-1080. DOI: 10.1109/TGRS.2012.2228654
[79] [79] LUKASHIN C, WIELICKI B A, YOUNG D F,et al. Uncertainty estimates for imager reference inter-calibration with CLARREO reflected solar spectrometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1425-1436. DOI: 10.1109/TGRS.2012.2233480
[80] [80] YU S S, ROSENBERG R, BRUEGGE C,et al. Stability assessment of OCO-2 radiometric calibration using aqua MODIS as a reference[J]. Remote Sensing, 2020, 12(8): 1269. DOI: 10.3390/rs12081269
[81] [81] KATAOKA F, CRISP D, TAYLOR T,et al. The cross-calibration of spectral radiances and cross-validation of CO2 estimates from GOSAT and OCO-2[J]. Remote Sensing, 2017, 9(11): 1158. DOI: 10.3390/rs9111158
[82] [82] WANG Q, ZHANG P, XU N,et al. An investigation on inter-calibrating EMI/GF-5 with TROPOMI/S5p in ultraviolet-visible spectra[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5540916. DOI: 10.1109/TGRS.2022.3214828
[83] [83] BHATT R, DOELLING D, WU A S,et al. Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets[J].Remote Sensing, 2014, 6(4): 2809-2826. DOI: 10.3390/rs6042809
[84] [84] STERCKX S, LIVENS S, ADRIAENSEN S. Rayleigh, deep convective clouds, and cross-sensor desert vicarious calibration validation for the PROBA-V mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1437-1452. DOI: 10.1109/TGRS.2012.2236682
[85] [85] MU Q Z, WU A S, CHANG T J,et al. Assessment of MODIS on-orbit calibration using a deep convective cloud technique[C]//Proceedings of the Earth Observing Systems XXI. SPIE, 2016: 997210.. DOI: 10.1117/12.2237047
[86] [86] MISHRA N, HELDER D, ANGAL A,et al. Absolute calibration of optical satellite sensors using Libya 4 pseudo invariant calibration site[J]. Remote Sensing, 2014, 6(2): 1327-1346. DOI: 10.3390/rs6021327
[87] [87] SUN L, QIU H, WU R H,et al. Long-term consistent recalibration of VIRR solar reflectance data record for Fengyun polar-orbiting satellites[J]. Journal of Meteorological Research, 2021, 35(6): 926-942. DOI: 10.1007/s13351-021-1049-3
[88] [88] WU A S, GENG X, WALD A,et al. Assessment of terra MODIS on-orbit polarization sensitivity using pseudoinvariant desert sites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 4168-4176. DOI: 10.1109/TGRS.2017.2689719
[89] [89] DOELLING D R, MORSTAD D, SCARINO B R,et al. The characterization of deep convective clouds as an invariant calibration target and as a visible calibration technique[J].IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1147-1159. DOI: 10.1109/TGRS.2012.2225066
[90] [90] MU Q Z, WU A S, XIONG X X,et al. Optimization of a deep convective cloud technique in evaluating the long-term radiometric stability of MODIS reflective solar bands[J]. Remote Sensing, 2017, 9(6): 535. DOI: 10.3390/rs9060535
[91] [91] WANG W H, FLYNN L, ZHANG X Y,et al. Cross-calibration of the Total Ozone Unit(TOU) with the Ozone Monitoring Instrument(OMI) and SBUV/2 for environmental applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(12): 4943-4955. DOI: 10.1109/TGRS.2012.2210902
[92] [92] WEAVER C J, BHARTIA P K, WU D L,et al. Inter-calibration of nine UV sensing instruments over Antarctica and Greenland since 1980[J]. Atmospheric Measurement Techniques, 2020, 13(10): 5715-5723. DOI: 10.5194/amt-13-5715-2020
[94] [94] DESCHAMPS P Y, BREON F M, LEROY M,et al. The POLDER mission: Instrument characteristics and scientific objectives[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3): 598-615. DOI: 10.1109/36.297978
[95] [95] RAST M, BEZY J L, BRUZZI S. The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission[J]. International Journal of Remote Sensing, 1999, 20(9): 1681-1702. DOI: 10.1080/014311699212416
[96] [96] MARTINY N, SANTER R, SMOLSKAIA I. Vicarious calibration of MERIS over dark waters in the near infrared[J].Remote Sensing of Environment, 2005, 94(4): 475-490. DOI: 10.1016/j.rse.2004.11.008
[97] [97] TILSTRA L G, VAN SOEST G, STAMMES P. Method for in-flight satellite calibration in the ultraviolet using radiative transfer calculations, with application to Scanning Imaging Absorption Spectrometer for Atmospheric Chartography(SCIAMACHY)[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D18): 2005JD005853. DOI: 10.1029/2005jd005853
[98] [98] TILSTRA L G, DE GRAAF M, WANG P,et al. In-orbit Earth reflectance validation of TROPOMI on board the Sentinel-5 Precursor satellite[J]. Atmospheric Measurement Techniques, 2020, 13(8): 4479-4497. DOI: 10.5194/amt-13-4479-2020
[99] [99] EMDE C, BURAS-SCHNELL R, KYLLING A,et al. The libRadtran software package for radiative transfer calculations (version 2.0.1)[J]. Geoscientific Model Development, 2016, 9(5): 1647-1672. DOI: 10.5194/gmd-9-1647-2016
[100] [100] SPURR R J D. VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 102(2): 316-342. DOI: 10.1016/j.jqsrt. 2006.05.005
[101] [101] ROZANOV V V, ROZANOV A V, KOKHANOVSKY A A,et al. Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 133: 13-71. DOI: 10.1016/j.jqsrt.2013.07.004
[102] [102] SU J M, SI F Q, ZHAO M J,et al. Validation of EMI-2 radiometric performance with TROPOMI over dome C site in Antarctica[J]. Remote Sensing, 2023, 15(8): 2012. DOI: 10.3390/rs15082012
[103] [103] ESA. GOME-2 calibration / validation[EB/OL]. (2020-3-12) [2024-02-10] https://www.esa.int/Applications/Observing_the_Earth/Meteorological_missions/MetOp/Calibration_validation3
[104] [104] CHEN B Y, WU A Q, HUI W,et al. Radiometric calibration using artificial intelligence: Constituting uniform observing systems for infrared satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5001616. DOI: 10.1109/TGRS.2025.3534794
Get Citation
Copy Citation Text
WANG Qian, ZHANG Peng, XU Na, CHEN Lin, BI Yanmeng, WU Ronghua, LIU Jianguo, SI Fuqi. Research Progress on On-orbit Calibration of Ultraviolet Hyperspectral Atmospheric Composition Satellite Sensors[J]. Remote Sensing Technology and Application, 2025, 40(4): 835
Received: Jan. 3, 2025
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: ZHANG Peng (zhangp@cma.gov.cn)