Remote Sensing Technology and Application, Volume. 40, Issue 4, 835(2025)
Research Progress on On-orbit Calibration of Ultraviolet Hyperspectral Atmospheric Composition Satellite Sensors
[2] [2] INGMANNP, VEIHELMANNB, LANGENJ, et al. Requirements for the GMES atmosphere service and ESA’s implementation concept: Sentinels-4 /-5 and-5p[J]. Remote Sensing of Environment, 2012, 120: 58-69. DOI: 10.1016/j.rse.2012.01.023
[3] [3] GARANEK, KOUKOULIM E, VERHOELSTT, et al. TROPOMI/S5P total ozone column data: Global ground-based validation and consistency with other satellite missions[J]. Atmospheric Measurement Techniques, 2019, 12(10): 5263-5287. DOI: 10.5194/amt-12-5263-2019
[4] [4] ORFANOZ-CHEUQUELAFA, ROZANOVA, WEBERM, et al. Total ozone column from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) measurements using the broadband Weighting Function Fitting Approach(WFFA)[J]. Atmospheric Measurement Techniques, 2021, 14(8): 5771-5789. DOI: 10.5194/amt-14-5771-2021
[5] [5] FIOLETOVV, MCLINDENC A, GRIFFIND, et al. Anthropogenic and volcanic point source SO2 emissions derived from TROPOMI on board Sentinel-5 Precursor: First results[J]. Atmospheric Chemistry and Physics, 2020, 20(9): 5591-5607. DOI: 10.5194/acp-20-5591-2020
[6] [6] VERHOELSTT, COMPERNOLLES, PINARDIG, et al. Ground-based validation of the Copernicus Sentinel-5p tropomi NO2 measurements with the ndacc zsl-doas, max-doas and Pandonia global networks[J]. Atmospheric Measurement Techniques, 2021, 14(1): 481-510. DOI: 10.5194/amt-14-481-2021
[7] [7] ZUOChao, CHENQian. Resolution, super-resolution and spatial bandwidth product expansion—some thoughts from the perspective of computational optical imaging[J]. Chinese Optics, 2022, 15(6): 1105-1166.
[8] [8] LIUYin, ZOUXiaolei. The development and application of satellite ozone data: A review[J]. Acta Meteorologica Sinica, 2016, 74(1): 1-17.
[9] [9] NASAGoddard Space Flight Center. Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide[R]. Greenbelt: NASA Goddard Space Flight Center, 1996.
[10] [10] NASAGoddard Space Flight Center. OMI Total Ozone Algorithm Theoretical Basis Document Volume II[R]. Greenbelt: NASA Goddard Space Flight Center, 2006.
[11] [11] WANGQ, WANGY M, XUN, et al. Preflight spectral calibration of the ozone monitoring suite-nadir on FengYun 3F satellite[J]. Remote Sensing, 2024, 16(9): 1538. DOI: 10.3390/rs16091538
[12] [12] ZHAOM J, SIF Q, WANGY, et al. First year on-orbit calibration of the Chinese environmental trace gas monitoring instrument onboard GaoFen-5[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8531-8540. DOI: 10.1109/TGRS.2020.2988573
[13] [13] LIZ F, ZHAOF C, LIY, et al. Ozone Monitoring Spectrometer-Limb observation (OMSL) on-orbit polarization correction for atmospheric radiation measurements[J]. Measurement, 2024, 234: 114820. DOI: 10.1016/j.measurement.2024.114820
[14] [14] JAROSSG, BHARTIAP K, CHENG, et al. OMPS Limb Profiler instrument performance assessment[J]. Journal of Geophysical Research (Atmospheres), 2014, 119(7): 4399-4412. DOI: 10.1002/2013JD020482
[15] [15] PANC H, YANB H, CAOC Y, et al. Performance of OMPS nadir profilers’ sensor data records[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6885-6893. DOI: 10.1109/TGRS.2020.3026586
[16] [16] KLEIPOOLQ, LUDEWIGA, BABIĆL, et al. Pre-launch calibration results of the TROPOMI payload on-board the Sentinel-5 Precursor satellite[J]. Atmospheric Measurement Techniques, 2018, 11(12): 6439-6479. DOI: 10.5194/amt-11-6439-2018
[17] [17] ERIK SCHENKEVELDV M, JAROSSG, MARCHENKOS, et al. In-flight performance of the ozone monitoring instrument[J]. Atmospheric Measurement Techniques, 2017, 10(5): 1957-1986. DOI: 10.5194/amt-10-1957-2017
[18] [18] DOBBERM, STAMMESP, LEVELTP, et al. In-flight calibration of GOME-2 level-1 data using the ozone monitoring instrument[C]∥Proceedings of Proceedings of the 1st EPS/MetOp RAO Workshop, May15-172006.Frascati: ESA bulletin, 2006.
[19] [19] OTTERG, DIJKHUIZENN, VOSTEENA, et al. Radiometric calibration of the GOME-2 instrument[C]∥3rd International Symposium of Space Optical Instruments and Applications, Beijing, June26-292017.Berlin: Springer, c2017.
[20] [20] MUNROR , EISINGERM , ANDERSONC, et al. GOME-2 on MetOp[C]∥ Atmospheric Science Conference, Frascati, May8-12, 2006.European Space Agency, 2006.
[21] [21] MUNROR, LANGR, KLAESD, et al. The GOME-2 instrument on the Metop series of satellites: Instrument design, calibration, and level 1 data processing - an overview[J]. Atmospheric Measurement Techniques Discussions, 2015, 8(8): 8645-8700. DOI: 10.5194/amtd-8-8645-2015
[26] [26] ULRICHP, JOCHENS. 2008. Differential Optical Absorption Spectroscopy[M]. Berlin Heidelberg : Springer,2008:135-155.
[27] [27] GALLIA, GUERLETS, BUTZA, et al. The impact of spectral resolution on satellite retrieval accuracy of CO2 and CH4[J]. Atmospheric Measurement Techniques, 2014, 7(4): 1105-1119. DOI: 10.5194/amt-7-1105-2014
[28] [28] CHANDERG, MARKHAMB L, HELDERD L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009, 113(5): 893-903. DOI: 10.1016/j.rse.2009.01.007
[29] [29] YANGZ D, ZHENY Q, YINZ S, et al. Laboratory spectral calibration of the TanSat atmospheric carbon dioxide grating spectrometer[J]. Geoscientific Instrumentation, Methods and Data Systems, 2018, 7(3): 245-252. DOI: 10.5194/gi-7-245-2018
[30] [30] BIYanmeng, WANGQian, YANGZhongdong, et al. TanSat ACGS on-orbit wavelength calibration using the solar Fraunhofer lines[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(3): 645-652.
[31] [31] LUDEWIGA, KLEIPOOLQ, BARTSTRAR, et al. In-flight calibration results of the TROPOMI payload on board the Sentinel-5 Precursor satellite[J]. Atmospheric Measurement Techniques, 2020, 13(7): 3561-3580. DOI: 10.5194/amt-13-3561-2020
[32] [32] ORDINGB, LUDEWIGA, BLOEMENDAL DTEN , et al. Results of the tropomi calibration campaign[C]∥Proceedings of the International Conference on Space Optics — ICSO 2016. SPIE, 2017: 103. DOI: 10.1117/12.2296118
[33] [33] SUNK, LIUX, NOWLANC R, et al. Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements[J]. Atmospheric Measurement Techniques, 2017, 10(3): 939-953. DOI: 10.5194/amt-10-939-2017
[34] [34] XUN, WUP, MAG, et al. In-flight spectral response function retrieval of a multispectral radiometer based on the functional data analysis technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5604210. DOI: 10.1109/TGRS.2021.3073097
[35] [35] CEBULAR P, PARKH, HEATHD F. Characterization of the nimbus-7 SBUV radiometer for the long-term monitoring of stratospheric ozone[J]. Journal of Atmospheric and Oceanic Technology, 1988, 5(2): 215-227. DOI: 10.1175/1520-0426(1988)0052.0.co;2
[36] [36] FRERICKJ, BOVENSMANNH, SNOELet al. SCIAMACHY on-ground/in-flight calibration, performance verification, and monitoring concepts[J]. Proceedings of SPIE, 1997, 3117. DOI:10.1117/12.283807
[37] [37] OTTERG, DIJKHUIZENN, VOSTEENA, et al. Radiometric calibration of the GOME-2 instrument[M].3rd International Symposium of Space Optical Instruments and Applications. Cham: Springer International Publishing, 2017: 493-504. DOI: 10.1007/978-3-319-49184-4_48
[38] [38] VAN GEFFENJ H G M, VANOSS R F. Wavelength calibration of spectra measured by the Global Ozone Monitoring Experiment by use of a high-resolution reference spectrum[J]. Applied Optics, 2003, 42(15): 2739-2753. DOI: 10.1364/ao.42.002739[PubMed]
[39] [39] COLDEWEY-EGBERSM, SLIJKHUISS, ABERLEB, et al. The global ozone monitoring experiment: Review of in-flight performance and new reprocessed 1995–2011 level 1 product[J]. Atmospheric Measurement Techniques, 2018, 11(9): 5237-5259. DOI: 10.5194/amt-11-5237-2018
[41] [41] GORDONI E, ROTHMANL S, HARGREAVESR J, et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277: 107949. DOI: 10.1016/j.jqsrt.2021.107949
[42] [42] CODDINGTONO M, RICHARDE C, HARBERD, et al. The TSIS-1 hybrid solar reference spectrum[J]. Geophysical Research Letters, 2021, 48(12): e2020GL091709. DOI: 10.1029/2020GL091709[PubMed]
[43] [43] DOBBERM, VOORSR, DIRKSENR, et al. The high-resolution solar reference spectrum between 250 and 550 nm and its application to measurements with the ozone monitoring instrument[J]. Solar Physics, 2008, 249(2): 281-291. DOI: 10.1007/s11207-008-9187-7
[44] [44] ZHAOF, LIUC, CAIZ N, et al. Ozone profile retrievals from TROPOMI: Implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China[J]. Science of The Total Environment, 2021, 764: 142886. DOI: 10.1016/j.scitotenv.2020.142886
[45] [45] CHANCEK, KURUCZR L. An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(9): 1289-1295. DOI: 10.1016/j.jqsrt.2010.01.036
[46] [46] LEVELTP F, VAN DEN OORDG, DOBBERM, et al. Ozone monitoring instrument flight-model on-ground and inflight calibration[C]∥Proceedings of the International Conference on Space Optics — ICSO 2004. SPIE, 2017: 61. DOI: 10.1117/12.2308017
[47] [47] MERONIM, BUSETTOL, GUANTERL, et al. Characterization of fine resolution field spectrometers using solar Fraunhofer lines and atmospheric absorption features[J]. Applied Optics, 2010, 49(15): 2858-2871. DOI: 10.1364/AO.49.002858[PubMed]
[48] [48] CHANCEK. Analysis of BrO measurements from the global ozone monitoring experiment[J]. Geophysical Research Letters, 1998, 25(17): 3335-3338. DOI: 10.1029/98gl52359
[49] [49] LIUX, BHARTIAP K, CHANCEK, et al. Ozone profile retrievals from the ozone monitoring instrument[J]. Atmospheric Chemistry & Physics,2010,10(5):2521-2537. DOI:10.5194/acp-10-2521-201010.5194/acpd-9-22693-2009
[50] [50] LIUX, CHANCEK, SIORISC E, et al. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation[J]. Journal of Geophysical Research (Atmospheres), 2005, 110(D20): D20307. DOI: 10.1029/2005JD006240
[51] [51] VOORSR, DOBBERM, DIRKSENR, et al. Method of calibration to correct for cloud-induced wavelength shifts in the Aura satellite’s Ozone Monitoring Instrument[J]. Applied Optics, 2006, 45(15): 3652. DOI: 10.1364/ao.45.003652
[53] [53] GREENR O. Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum[J]. Applied Optics, 1998, 37(4): 683-690. DOI: 10.1364/ao.37.000683
[54] [54] HUANGShan, SIFuqi, ZHAOMinjie, et al. Study on the slit function of atmospheric trace gas differential optical absorption spectrometer[J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2008.黄珊, 司福祺, 赵敏杰, 等. 星载大气痕量气体差分吸收光谱仪狭缝函数研究[J]. 光谱学与光谱分析, 2019, 39(7): 2008. DOI: 10.3964/j.issn.1000-0593(2019)07-2008-05
[55] [55] ZHANGC X, LIUC, WANGY, et al. Preflight evaluation of the performance of the Chinese Environmental trace gas Monitoring Instrument(EMI) by spectral analyses of nitrogen dioxide[J]. IEEE Transactions on Geoscience and Remote Sensing,2018,56(6):3323-3332.DOI:10.1109/TGRS. 2018.2798038
[56] [56] DIRKSENR, DOBBERM, VOORSR, et al. Prelaunch characterization of the ozone monitoring instrument transfer function in the spectral domain[J]. Applied Optics, 2006, 45(17): 3972-3981. DOI: 10.1364/ao.45.003972[PubMed]
[57] [57] BEIRLES, LAMPELJ, LEROTC, et al. Parameterizing the instrumental spectral response function and its changes by a super-Gaussian and its derivatives[J]. Atmospheric Measurement Techniques, 2017, 10(2): 581-598. DOI: 10.5194/amt-10-581-2017
[59] [59] DOBBERM, DIRKSENR, LEVELTP, et al. Ozone monitoring instrument in-flight performance and calibration[C]∥International Conference on Space Optics.Noordwijk,June27-302006.Netherlands: SPIE press, 2006.
[61] [61] O’DELLC W, DAYJ O, POLLOCKR, et al. Preflight radiometric calibration of the orbiting carbon observatory[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(6):2438-2447. DOI:10.1109/TGRS.2010.2090887
[62] [62] XIONGX X, BARNESW L, CHIANGK, et al. Status of aqua MODIS on-orbit calibration and characterization[C]∥Proceedings of the Sensors, Systems, and Next-Generation Satellites VIII. SPIE, 2004: 317.. DOI: 10.1117/12.564940
[63] [63] SAKUMAF, BRUEGGEC J, RIDERD, et al. OCO/GOSAT preflight cross-calibration experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 585-599. DOI: 10.1109/TGRS.2009.2026050
[64] [64] WANGLong, LINChao, JIZhenhua, et al. Preflight diffuser’s calibration of carbon dioxide spectrometer of TanSat[J]. Optics and Precision Engineering, 2018, 26(8): 1967-1976.
[65] [65] ZHANGZ Y, CHENH Y, HUANGW X, et al. High accuracy solar diffuser BRDF measurement for on-board calibration in the solar reflective band[J]. Remote Sensing, 2023, 15(15): 3783. DOI: 10.3390/rs15153783
[66] [66] KOWALEWSKIM G, JAROSSG, CEBULAR P, et al. Evaluation of the Ozone Monitoring Instrument’s pre-launch radiometric calibration using in-flight data[C]∥Proceedings of the Earth Observing Systems X. SPIE, 2005: 58820Y.. DOI: 10.1117/12.619282
[67] [67] DOBBERM R, DIRKSENR J, LEVELTP F, et al. Ozone monitoring instrument calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1209-1238. DOI: 10.1109/TGRS.2006.869987
[68] [68] DIRKSENR, DOBBERM, LEVELTP, et al. The on-ground calibration of the ozone monitoring instrument from a scientific point of view[C]∥Proceedings of the Sensors, Systems, and Next-Generation Satellites VII. SPIE, 2004: 400.. DOI: 10.1117/12.511484
[69] [69] KIEFFERH H. Photometric stability of the lunar surface[J]. Icarus,1997,130(2):323-327. DOI:10.1006/icar.1997.5822
[70] [70] URABET, XIONGX X, HASHIGUCHIT, et al. Lunar calibration inter-comparison of SGLI, MODIS and VIIRS[C]∥Proceedings of the IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019: 8481-8484. DOI: 10.1109/IGARSS.2019.8897892
[71] [71] STONET C, KIEFFERH H. Assessment of uncertainty in ROLO lunar irradiance for on-orbit calibration[C]∥Proceedings of the Earth Observing Systems IX. SPIE, 2004: 300.. DOI: 10.1117/12.560236
[75] [75] HEWISONT J. An evaluation of the uncertainty of the GSICS SEVIRI-IASI intercalibration products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1171-1181. DOI: 10.1109/TGRS.2012.2236330
[77] [77] CHANDERG, MISHRAN, HELDERD L, et al. Applications of Spectral Band Adjustment Factors(SBAF) for cross-calibration[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,51(3):1267-1281. DOI:10.1109/TGRS. 2012.2228007
[78] [78] CHANDERG, HEWISONT J, FOX N, et al. Overview of intercalibration of satellite instruments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1056-1080. DOI: 10.1109/TGRS.2012.2228654
[79] [79] LUKASHINC, WIELICKIB A, YOUNGD F, et al. Uncertainty estimates for imager reference inter-calibration with CLARREO reflected solar spectrometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1425-1436.DOI:10.1109/TGRS.2012.2233480
[80] [80] YUS S, ROSENBERGR, BRUEGGEC, et al. Stability assessment of OCO-2 radiometric calibration using aqua MODIS as a reference[J]. Remote Sensing, 2020, 12(8): 1269. DOI: 10.3390/rs12081269
[81] [81] KATAOKAF, CRISPD, TAYLORT, et al. The cross-calibration of spectral radiances and cross-validation of CO2 estimates from GOSAT and OCO-2[J]. Remote Sensing, 2017, 9(11): 1158. DOI: 10.3390/rs9111158
[82] [82] WANGQ, ZHANGP, XUN, et al. An investigation on inter-calibrating EMI/GF-5 with TROPOMI/S5p in ultraviolet-visible spectra[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:5540916. DOI:10.1109/TGRS. 2022.3214828
[83] [83] BHATTR, DOELLINGD, WUA S, et al. Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets[J]. Remote Sensing, 2014, 6(4): 2809-2826. DOI: 10.3390/rs6042809
[84] [84] STERCKXS, LIVENSS, ADRIAENSENS. Rayleigh, deep convective clouds, and cross-sensor desert vicarious calibration validation for the PROBA-V mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1437-1452. DOI: 10.1109/TGRS.2012.2236682
[85] [85] MUQ Z, WUA S, CHANGT J, et al. Assessment of MODIS on-orbit calibration using a deep convective cloud technique[C]∥Proceedings of the Earth Observing Systems XXI. SPIE, 2016: 997210.. DOI: 10.1117/12.2237047
[86] [86] MISHRAN, HELDERD, ANGALA, et al. Absolute calibration of optical satellite sensors using Libya 4 pseudo invariant calibration site[J]. Remote Sensing, 2014, 6(2): 1327-1346. DOI: 10.3390/rs6021327
[87] [87] SUNL, QIUH, WUR H, et al. Long-term consistent recalibration of VIRR solar reflectance data record for Fengyun polar-orbiting satellites[J]. Journal of Meteorological Research, 2021, 35(6): 926-942. DOI: 10.1007/s13351-021-1049-3
[88] [88] WUA S, GENGX, WALDA, et al. Assessment of terra MODIS on-orbit polarization sensitivity using pseudoinvariant desert sites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 4168-4176. DOI: 10.1109/TGRS.2017.2689719
[89] [89] DOELLINGD R, MORSTADD, SCARINOB R, et al. The characterization of deep convective clouds as an invariant calibration target and as a visible calibration technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(3):1147-1159. DOI:10.1109/TGRS.2012.2225066
[90] [90] MUQ Z, WUA S, XIONGX X, et al. Optimization of a deep convective cloud technique in evaluating the long-term radiometric stability of MODIS reflective solar bands[J]. Remote Sensing, 2017, 9(6): 535. DOI: 10.3390/rs9060535
[91] [91] WANGW H, FLYNNL, ZHANGX Y, et al. Cross-calibration of the Total Ozone Unit(TOU) with the Ozone Monitoring Instrument (OMI) and SBUV/2 for environmental applications[J]. IEEE Transactions on Geoscience and Remote Sensing,2012,50(12):4943-4955. DOI:10.1109/TGRS. 2012.2210902
[92] [92] WEAVERC J, BHARTIAP K, WUD L, et al. Inter-calibration of nine UV sensing instruments over Antarctica and Greenland since 1980[J]. Atmospheric Measurement Techniques, 2020, 13(10): 5715-5723. DOI: 10.5194/amt-13-5715-2020
[93] [93] SUJingming, SIFuqi, ZHAOMinjie, et al. On orbit radiometric calibration evaluation of environmental trace gases monitoring instrument[J]. Acta Optica Sinica, 2022, 42(6): 0601001.苏静明, 司福祺, 赵敏杰, 等. 大气痕量气体差分吸收光谱仪在轨辐射定标评估[J]. 光学学报, 2022, 42(6): 0601001. DOI: 10.3788/AOS202242.0601001
[94] [94] DESCHAMPSP Y, BREONF M, LEROYM, et al. The POLDER mission: Instrument characteristics and scientific objectives[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3): 598-615. DOI: 10.1109/36.297978
[95] [95] RASTM,BEZYJ L,BRUZZIS. The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission[J]. International Journal of Remote Sensing,1999,20(9):1681-1702. DOI:10.1080/014311699212416
[96] [96] MARTINYN, SANTERR, SMOLSKAIAI. Vicarious calibration of MERIS over dark waters in the near infrared[J]. Remote Sensing of Environment, 2005, 94(4): 475-490. DOI: 10.1016/j.rse.2004.11.008
[97] [97] TILSTRAL G, VAN SOESTG, STAMMESP. Method for in-flight satellite calibration in the ultraviolet using radiative transfer calculations, with application to Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY)[J]. Journal of Geophysical Research: Atmospheres,2005,110(D18): 2005JD005853. DOI:10.1029/2005jd005853
[98] [98] TILSTRAL G, DE GRAAFM, WANGP, et al. In-orbit Earth reflectance validation of TROPOMI on board the Sentinel-5 Precursor satellite[J]. Atmospheric Measurement Techniques,2020,13(8):4479-4497. DOI:10.5194/amt-13-4479-2020
[99] [99] EMDEC, BURAS-SCHNELLR, KYLLINGA, et al. The libRadtran software package for radiative transfer calculations (version 2.0.1)[J]. Geoscientific Model Development, 2016, 9(5): 1647-1672. DOI: 10.5194/gmd-9-1647-2016
[100] [100] SPURRR J D. VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2006,102(2):316-342. DOI:10.1016/j.jqsrt. 2006. 05.005
[101] [101] ROZANOVV V, ROZANOVA V, KOKHANOVSKYA A, et al. Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 133: 13-71. DOI: 10.1016/j.jqsrt.2013.07.004
[102] [102] SUJ M, SIF Q, ZHAOM J, et al. Validation of EMI-2 radiometric performance with TROPOMI over dome C site in Antarctica[J]. Remote Sensing, 2023, 15(8): 2012. DOI: 10.3390/rs15082012
[104] [104] CHENB Y, WUA Q, HUIW, et al. Radiometric calibration using artificial intelligence: Constituting uniform observing systems for infrared satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5001616. DOI: 10.1109/TGRS.2025.3534794
Get Citation
Copy Citation Text
Qian WANG, Peng ZHANG, Na XU, Lin CHEN, Yanmeng BI, Ronghua WU, Jianguo LIU, Fuqi SI. Research Progress on On-orbit Calibration of Ultraviolet Hyperspectral Atmospheric Composition Satellite Sensors[J]. Remote Sensing Technology and Application, 2025, 40(4): 835
Category:
Received: Jan. 3, 2025
Accepted: --
Published Online: Aug. 26, 2025
The Author Email: Peng ZHANG (zhangp@cma.gov.cn)