Remote Sensing Technology and Application, Volume. 40, Issue 4, 835(2025)

Research Progress on On-orbit Calibration of Ultraviolet Hyperspectral Atmospheric Composition Satellite Sensors

Qian WANG1,2,3,4,5, Peng ZHANG6、*, Na XU3,4,5, Lin CHEN3,4,5, Yanmeng BI3,4,5, Ronghua WU3,4,5, Jianguo LIU2, and Fuqi SI2
Author Affiliations
  • 1University of Science and Technology of China,Hefei230026, China
  • 2Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
  • 3Innovation Center for FengYun Meteorological Satellite,Beijing100081,China
  • 4Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration, Beijing100081, China
  • 5National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing100081, China
  • 6Meteorological Observation Centre, China Meteorological Administration, Beijing100081, China
  • show less
    Figures & Tables(9)
    Three kinds of high-resolution solar spectra at 200~1 000 nm
    Flow chart of the wavelength calibration method based on fitting
    Flow chart of the calibration method based on radiative transfer model
    • Table 1. Major parameters for atmospheric composition hyperspectral remote sensors in the ultraviolet band

      View table
      View in Article

      Table 1. Major parameters for atmospheric composition hyperspectral remote sensors in the ultraviolet band

      仪器/平台国家/机构轨道发射时间/年波段范围/nm

      光谱分辨率

      /nm

      空间分辨率/km2

      幅宽

      /km

      定标观测

      UVN

      Sentinel-4

      欧洲

      ESA

      高轨预计2025

      305~400

      400~500

      755~775

      0.5

      0.5

      0.2

      8 × 8--

      太阳观测

      白光灯定标

      LED灯定标

      UVNS

      Sentinel-5

      欧洲

      ESA

      低轨预计2025

      270~300

      300~337

      370~500

      685~710

      750~775

      1 590~1 675

      2 305~2 385

      1.0

      0.5

      0.5

      0.4

      0.4

      0.25

      0.25

      7 × 28

      7 × 7

      7 × 7

      7 × 7

      7 × 7

      7 × 7

      7 × 7

      --

      太阳观测

      白光灯定标

      LED灯定标

      OMS-N

      FY-3F

      中国

      CMA

      低轨2023

      250~300

      300~320

      310~493

      0.5

      0.5

      0.5

      21 × 28

      7 × 7

      7 × 7

      2 900

      太阳观测

      白光灯定标

      OMS-L

      FY-3F

      中国

      CMA

      低轨2023290~5000.6

      100(水平)

      3(垂直)

      --

      太阳观测

      白光灯定标

      标准谱线灯

      TEMPO

      美国

      NASA

      高轨2023

      290~490

      540~740

      0.57

      0.2

      2×4.5--

      太阳观测

      白光灯定标

      LED灯定标

      EMI

      GF-5/

      GF-5B/

      DQ-1

      中国

      CNSA

      低轨

      2018

      2021

      2022

      240~315

      311~403

      401~600

      590~790

      0.3

      0.3

      0.5

      0.5

      13×48

      13×37

      13×37

      13×37

      2 600

      太阳观测

      白光灯定标

      GEMS

      韩国

      ME(NIER)

      高轨2020300~5000.67 × 8--

      太阳观测

      白光灯定标

      LED灯定标

      GOME-2

      Metop-A/

      Metop-B/

      Metop-C

      欧洲

      ESA

      低轨

      2006

      2012

      2018

      240~314

      310~403

      397~604

      593~790

      0.26

      0.27

      0.51

      0.48

      (Metop A)

      80 × 40

      (Metop B/C)

      40 × 40

      1 920

      太阳观测

      白光灯定标

      LED灯定标

      标准谱线灯

      TROPOMI

      Sentinel-5p

      欧洲

      ESA

      低轨2017

      267~300

      300~332

      305~400

      400~499

      661~725

      725~786

      2 300~2 343

      2 343~2 389

      0.50

      0.50

      0.65

      0.65

      0.45

      0.45

      0.227

      0.225

      5.5 × 28

      3.5 × 5.5

      3.5 × 5.5

      3.5 × 5.5

      3.5 × 5.5

      3.5 × 5.5

      7 × 5.5

      7 × 5.5

      2 600

      太阳观测

      白光灯定标

      LED灯定标

      OMPS-nadir

      SNPP/

      NOAA-20/

      NOAA-21

      美国

      NOAA

      低轨

      2011

      2017

      2022

      250~310

      300~380

      1

      1

      (SNPP/NOAA-20)

      50

      250

      (NOAA-21)

      10

      250

      2 800

      太阳观测

      LED灯定标

      OMPS-limb

      SNPP/

      NOAA-21

      美国

      NOAA

      低轨

      2011

      2022

      290~1 0000.75~25

      2.2 (垂直)

      300(水平)

      500太阳观测

      OMI

      Aura

      美国

      NASA

      低轨2004

      270~310

      310~365

      365~500

      0.42

      0.45

      0.63

      36 × 48

      13 × 24

      13 × 24

      2 600

      太阳观测

      白光灯定标

      LED灯定标

    • Table 2. Major gases and spectral range based on hyperspectral remote sensors in the ultraviolet band

      View table
      View in Article

      Table 2. Major gases and spectral range based on hyperspectral remote sensors in the ultraviolet band

      探测目标光谱范围/nm
      O3廓线270 ~ 320
      SO2312.5 ~ 327.0
      O3326.6 ~334.5
      BrO336.0 ~ 347.0
      HCHO337.0 ~ 353.0
      吸收性气溶胶指数

      340/380

      335/367

      NO2425.0 ~ 450.0

      460 ~ 490

      756 ~773

    • Table 3. Calibration observation modes of typical hyperspectral remote sensors in the ultraviolet band

      View table
      View in Article

      Table 3. Calibration observation modes of typical hyperspectral remote sensors in the ultraviolet band

      定标方式TROPOMIOMIGOME-2OMS-N
      太阳定标光谱定标、辐射定标

      工作漫射板(石英)/天

      参考漫射板(石英)/周

      工作漫射板(石英)/天

      参考漫射板(铝)/周

      备用漫射板(铝)/月

      工作漫射板(石英)/天

      工作漫射板(石英)/月

      参考漫射板(石英)/6月

      月球定标辐射定标、仪器状态监测。
      ----满足几何条件择机观测,一年可以观测几次。--
      暗背景每轨一次,用于辐射定标、仪器状态监测。
      白光灯辐射定标、响应非均匀性订正、仪器状态分析监测。
      LED灯响应非均匀性订正、非线性订正、探测器性能监测。--
      谱线灯----光谱定标
    • Table 4. The parameters for typical solar reference spectrum

      View table
      View in Article

      Table 4. The parameters for typical solar reference spectrum

      参考光谱SAO 2010Kurucz 2010TSIS-1 HSRS
      谱段范围/nm200.07~1000.99300~1000202~2730
      光谱分辨率/nm0.040.0010.01~0.001
      光谱采样步长/nm0.010.000 330.001
      辐射精度5%5%0.3% @ 460~2 365 nm 1.3% 其他
      参考来源Chance and Kurucz (2010)Chance and Kurucz (2010)Coddington等2021
    • Table 5. Summary of on-orbit spectral calibration references, methods and accuracy for given typical hyperspectral remote sensors in the ultraviolet band

      View table
      View in Article

      Table 5. Summary of on-orbit spectral calibration references, methods and accuracy for given typical hyperspectral remote sensors in the ultraviolet band

      TROPOMIOMIGOME-2
      光谱定标参考源太阳光谱太阳光谱

      太阳光谱

      标准谱线灯

      波长定标基于在轨太阳观测,采用窗区拟合的光谱定标算法,订正星上波长漂移,实现星上波长定标。
      光谱响应函数--根据仪器在谱线灯光源条件下的探测器实际响应,拟合在轨光谱响应函数,分析光谱响应函数的在轨变化。
      光谱分辨率--根据谱线灯光源条件下获得的在轨光谱响应函数,计算仪器光谱分辨率,监测仪器光谱分辨率在轨变化。
      波长定标精度0.02~0.04 nm-0.01~0.01 nm-0.02~0.01 nm
    • Table 6. Summary of on-orbit radiometric calibration references, methods and accuracy for given typical hyperspectral remote sensors in the ultraviolet band

      View table
      View in Article

      Table 6. Summary of on-orbit radiometric calibration references, methods and accuracy for given typical hyperspectral remote sensors in the ultraviolet band

      TROPOMIOMIGOME-2
      辐射定标精度2%3%~4%1.6%~2.4%
      辐射定标参考源

      理论太阳光谱

      同类遥感仪器观测

      辐射传输模式

      辐照度定标基于在轨太阳观测,结合仪器光谱响应函数,根据计算的理论太阳观测和实际卫星观测进行在轨辐照度定标。
      辐亮度定标通过SNO交叉定标方法,针对匹配像元,对同类仪器重叠谱段的辐亮度进行辐射定标。
      反射率定标基于辐射传输模式,采用模式计算的理论观测反射率作为参考基准,结合在轨实际观测,对反射率光谱进行在轨定标和验证。但由于臭氧的强烈吸收,这种方法在325 nm以下的紫外波段不确定性较大。
    Tools

    Get Citation

    Copy Citation Text

    Qian WANG, Peng ZHANG, Na XU, Lin CHEN, Yanmeng BI, Ronghua WU, Jianguo LIU, Fuqi SI. Research Progress on On-orbit Calibration of Ultraviolet Hyperspectral Atmospheric Composition Satellite Sensors[J]. Remote Sensing Technology and Application, 2025, 40(4): 835

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 3, 2025

    Accepted: --

    Published Online: Aug. 26, 2025

    The Author Email: Peng ZHANG (zhangp@cma.gov.cn)

    DOI:10.11873/j.issn.1004-0323.2025.4.0835

    Topics