Laser & Optoelectronics Progress, Volume. 61, Issue 17, 1714006(2024)

Research on Microstructures and Properties of High-Speed Laser-Cladded Iron-Based Amorphous Alloy Coatings

Nanxin Xiang, Houming Zhou*, Yuhao Wang, Xingyu Cao, and Shengui Li
Author Affiliations
  • College of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, Hunan, China
  • show less
    Figures & Tables(16)
    Working principle of laser cladding. (a) High-speed laser cladding; (b) conventional laser cladding
    XRD and SEM images of the powder. (a) XRD; (b) SEM
    Amorphous and crystalline phase distribution of the coating cross section. (a) 2000 W; (b) 2200 W; (c) 2400 W; (d) 2600 W; (e) 2800 W
    Thermal effect of laser beam on substrate surface. (a) 2000 W; (b) 2400 W
    XRD pattern of coating at different laser power
    SEM and EDS analysis diagram of region A
    SEM images of the top and bottom of the coating under different laser powers
    Experimental results[38]. (a) Relationship between temperature gradient G and solidification rate R with the depth of molten pool in CLC process; (b) effect of temperature gradient G and solidification rate R on crystallization tendency of melt
    Hardness distribution diagram and average hardness diagram from the top of the coating cross section to the substrate. (a) Hardness profile; (b) hardness test points in amorphous and crystalline areas; (c) average hardness chart
    Friction coefficient curves and wear rate diagram of the coating. (a) Friction coefficient curves; (b) wear rate
    SEM images of the surface wear morphology of the coating. (a) 2000 W; (b) 2200 W; (c) 2400 W; (d) 2600 W; (e) 2800 W
    Schematic diagram of friction and wear on the surface of the coating. (a) 2000 W; (b) 2200 W; (c) 2800 W
    • Table 1. Chemical composition of Q345b mild steel

      View table

      Table 1. Chemical composition of Q345b mild steel

      ElementFeCMnSiPCrNiCu
      Mass fraction /%Bal.1.61.40.4<0.03<0.3<0.3<0.25
    • Table 2. Experimental process parameters of laser cladding

      View table

      Table 2. Experimental process parameters of laser cladding

      Laser power /WScanning speed /(mm·min-1Spot diameter /mmPowder feed rate /(g·min-1Gas flow rate /(L·min-1
      2000600212015
      2200600212015
      2400600212015
      2600600212015
      2800600212015
    • Table 3. Relative content of non-crystalline phase in the coating under each parameter

      View table

      Table 3. Relative content of non-crystalline phase in the coating under each parameter

      Laser power /W20002200240026002800
      Relative amount /%1976423629
    • Table 4. Chemical composition of cladding powder and phases

      View table

      Table 4. Chemical composition of cladding powder and phases

      SampleMass fraction /%
      FeCrBSiC
      Powder85.02.04.02.96.1
      84.22.04.22.67.0
      88.51.304.95.3
      89.11.305.24.4
    Tools

    Get Citation

    Copy Citation Text

    Nanxin Xiang, Houming Zhou, Yuhao Wang, Xingyu Cao, Shengui Li. Research on Microstructures and Properties of High-Speed Laser-Cladded Iron-Based Amorphous Alloy Coatings[J]. Laser & Optoelectronics Progress, 2024, 61(17): 1714006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Dec. 15, 2023

    Accepted: Jan. 12, 2024

    Published Online: Sep. 14, 2024

    The Author Email: Houming Zhou (zhouhouming@xtu.edu.cn)

    DOI:10.3788/LOP232681

    CSTR:32186.14.LOP232681

    Topics