Photonics Research, Volume. 10, Issue 8, 1886(2022)

High-performance Ag2BiI5 Pb-free perovskite photodetector

Zihao Shuang1,2,3, Hai Zhou1,3,4、*, Dingjun Wu2,3, Xuhui Zhang2,3, Boao Xiao2,3, Jinxia Duan2,3, and Hao Wang2,3,5、*
Author Affiliations
  • 1International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China
  • 2Hubei Yangtze Memory Laboratories, Wuhan 430205, China
  • 3School of Microelectronics, Hubei University, Wuhan 430062, China
  • 4e-mail: hizhou@dgut.edu.cn
  • 5e-mail: wangh@hubu.edu.cn
  • show less
    References(38)

    [1] J. Haddad, B. Krogmeier, B. Klingebiel, L. Krückemeier, S. Melhem, Z. Liu, J. Hüpkes, S. Mathur, T. Kirchartz. Analyzing interface recombination in lead-halide perovskite solar cells with organic and inorganic hole-transport layers. Adv. Mater. Interfaces, 7, 2000366(2020).

    [2] L. Li, F. Zhang, S. Ye, X. Peng, Z. Sun, J. Lian, L. Liu, J. Qu, J. Song. Self-powered photodetectors based on CsxDMA1-xPbI3 perovskite films with high detectivity and stability. Nano Energy, 71, 104611(2020).

    [3] F. Zhang, B. Cai, J. Song, B. Han, B. Zhang, H. Zeng. Efficient blue perovskite light-emitting diodes boosted by 2D/3D energy cascade channels. Adv. Funct. Mater., 30, 2001732(2020).

    [4] A. A. Brown, B. Damodaran, L. Jiang, J. N. Tey, S. H. Pu, N. Mathews, S. G. Mhaisalkar. Lead halide perovskite nanocrystals: room temperature syntheses toward commercial viability. Adv. Energy Mater., 10, 2001349(2020).

    [5] E. Meyer, D. Mutukwa, N. Zingwe, R. Taziwa. Lead-free halide double perovskites: a review of the structural, optical, and stability properties as well as their viability to replace lead halide perovskites. Metals, 8, 667(2018).

    [6] A. H. Slavney, R. W. Smaha, I. C. Smith, A. Jaffe, D. Umeyama, H. I. Karunadasa. Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers. Inorg. Chem., 56, 46-55(2017).

    [7] I. Turkevych, S. Kazaoui, E. Ito, T. Urano, K. Yamada, H. Tomiyasu, H. Yamagishi, M. Kondo, S. Aramaki. Photovoltaic rudorffites: structure and optoelectronic properties. ChemSusChem, 10, 3754-3759(2017).

    [8] Q. Zhang, C. Wu, X. Qi, F. Lv, Z. Zhang, Y. Liu, S. Wang, B. Qu, Z. Chen, L. Xiao. Photovoltage approaching 0.9 V for planar heterojunction silver bismuth iodide solar cells with Li-TFSI additive. ACS Appl. Energy Mater., 2, 3651-3656(2019).

    [9] H. Wu, H. Zhu, A. Erbing, M. B. Johansson, S. Mukherjee, G. J. Man, H. Rensmo, M. Odelius, E. M. Johansson. Bandgap tuning of silver bismuth iodide via controllable bromide substitution for improved photovoltaic performance. ACS Appl. Energy Mater., 2, 5356-5362(2019).

    [10] M. Khazaee, K. Sardashti, C.-C. Chung, J.-P. Sun, H. Zhou, E. Bergmann, W. A. Dunlap-Shohl, Q. Han, I. G. Hill, J. L. Jones. Dual-source evaporation of silver bismuth iodide films for planar junction solar cells. J. Mater. Chem. A, 7, 2095-2105(2019).

    [11] M. Wang, P. Zeng, S. Bai, J. Gu, F. Li, Z. Yang, M. Liu. High-quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells. Solar RRL, 2, 1800217(2018).

    [12] N. Wang, Y. Zhou, M. G. Ju, H. F. Garces, T. Ding, S. Pang, X. C. Zeng, N. P. Padture, X. W. Sun. Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films. Adv. Energy Mater., 6, 1601130(2016).

    [13] Y. Yu, D. Zhao, C. R. Grice, W. Meng, C. Wang, W. Liao, A. J. Cimaroli, H. Zhang, K. Zhu, Y. Yan. Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Adv., 6, 90248-90254(2016).

    [14] H. Lan, X. Chen, P. Fan, G. Liang. Inorganic and lead-free CsBi3I10 thin-film solar cell prepared by single-source thermal evaporation. J. Mater. Sci. Mater. Electron., 32, 11183-11192(2021).

    [15] S. S. Shin, J. P. C. Baena, R. C. Kurchin, A. Polizzotti, J. J. Yoo, S. Wieghold, M. G. Bawendi, T. Buonassisi. Solvent-engineering method to deposit compact bismuth-based thin films: mechanism and application to photovoltaics. Chem. Mater., 30, 336-343(2018).

    [16] C. Gao, Y. Jiang, C. Sun, J. Han, T. He, Y. Huang, K. Yao, M. Han, X. Wang, Y. Wang. Multifunctional naphthol sulfonic salt incorporated in lead-free 2D tin halide perovskite for red light-emitting diodes. ACS Photon., 7, 1915-1922(2020).

    [17] D.-J. Xue, Y. Hou, S.-C. Liu, M. Wei, B. Chen, Z. Huang, Z. Li, B. Sun, A. H. Proppe, Y. Dong. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun., 11, 1514(2020).

    [18] X. Zheng, B. Chen, C. Wu, S. Priya. Room temperature fabrication of CH3NH3PbBr3 by anti-solvent assisted crystallization approach for perovskite solar cells with fast response and small J–V hysteresis. Nano Energy, 17, 269-278(2015).

    [19] L. Huang, Z. Hu, J. Xu, K. Zhang, J. Zhang, Y. Zhu. Multi-step slow annealing perovskite films for high performance planar perovskite solar cells. Sol. Energy Mater. Sol. Cells, 141, 377-382(2015).

    [20] Y. C. Wang, J. Chang, L. Zhu, X. Li, C. Song, J. Fang. Electron-transport-layer-assisted crystallization of perovskite films for high-efficiency planar heterojunction solar cells. Adv. Funct. Mater., 28, 1706317(2018).

    [21] D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya, S. F. Liu. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun., 9, 3239(2018).

    [22] V. Pecunia, Y. Yuan, J. Zhao, K. Xia, Y. Wang, S. Duhm, L. Portilla, F. Li. Perovskite-inspired lead-free Ag2BiI5 for self-powered NIR-blind visible light photodetection. Nano-micro Lett., 12, 27(2020).

    [23] H. Zhu, M. Pan, M. B. Johansson, E. M. Johansson. High photon-to-current conversion in solar cells based on light-absorbing silver bismuth iodide. ChemSusChem, 10, 2592-2596(2017).

    [24] C. Bao, Z. Chen, Y. Fang, H. Wei, Y. Deng, X. Xiao, L. Li, J. Huang. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater., 29, 1703209(2017).

    [25] U. Bansode, A. Rahman, S. Ogale. Low-temperature processing of optimally polymer-wrapped α-CsPbI3 for self-powered flexible photo-detector application. J. Mater. Chem. C, 7, 6986-6996(2019).

    [26] L. Li, Z. Lou, G. Shen. Hierarchical CdS nanowires based rigid and flexible photodetectors with ultrahigh sensitivity. ACS Appl. Mater. Interfaces, 7, 23507-23514(2015).

    [27] A. Kumar, U. Bansode, S. Ogale, A. Rahman. Understanding the thermal degradation mechanism of perovskite solar cells via dielectric and noise measurements. Nanotechnology, 31, 365403(2020).

    [28] C. Fang, H. Wang, Z. Shen, H. Shen, S. Wang, J. Ma, J. Wang, H. Luo, D. Li. High-performance photodetectors based on lead-free 2D Ruddlesden–Popper perovskite/MoS2 heterostructures. ACS Appl. Mater. Interfaces, 11, 8419-8427(2019).

    [29] F. Cao, W. Tian, M. Wang, M. Wang, L. Li. Stability enhancement of lead-free CsSnI3 perovskite photodetector with reductive ascorbic acid additive. InfoMat, 2, 577-584(2020).

    [30] W. Liang, Z. Shi, Y. Li, J. Ma, S. Yin, X. Chen, D. Wu, Y. Tian, Y. Tian, Y. Zhang. Strategy of all-inorganic Cs3Cu2I5/Si-Core/Shell nanowire heterojunction for stable and ultraviolet-enhanced broadband photodetectors with imaging capability. ACS Appl. Mater. Interfaces, 12, 37363-37374(2020).

    [31] A. A. Hussain, A. K. Rana, M. Ranjan. Air-stable lead-free hybrid perovskite employing self-powered photodetection with an electron/hole-conductor-free device geometry. Nanoscale, 11, 1217-1227(2019).

    [32] C. Wu, B. Du, W. Luo, Y. Liu, T. Li, D. Wang, X. Guo, H. Ting, Z. Fang, S. Wang. Highly efficient and stable self-powered ultraviolet and deep-blue photodetector based on Cs2AgBiBr6/SnO2 heterojunction. Adv. Opt. Mater., 6, 1800811(2018).

    [33] Y. Dang, G. Tong, W. Song, Z. Liu, L. Qiu, L. K. Ono, Y. Qi. Interface engineering strategies towards Cs2AgBiBr6 single-crystalline photodetectors with good Ohmic contact behaviours. J. Mater. Chem. C, 8, 276-284(2020).

    [34] H. Zhou, L. Yang, P. Gui, C. R. Grice, Z. Song, H. Wang, G. Fang. Ga-doped ZnO nanorod scaffold for high-performance, hole-transport-layer-free, self-powered CH3NH3PbI3 perovskite photodetectors. Sol. Energy Mater. Sol. Cells, 193, 246-252(2019).

    [35] X. Yang, Y. Zhu, H. Zhou, Z. Song, R. Liu, L. Shen, H. Wang. MgO/ZnO microsphere bilayer structure towards enhancing the stability of the self-powered MAPbI3 perovskite photodetectors with high detectivity. Appl. Surf. Sci., 504, 144468(2020).

    [36] Z. Li, H. Li, K. Jiang, D. Ding, J. Li, C. Ma, S. Jiang, Y. Wang, T. D. Anthopoulos, Y. Shi. Self-powered perovskite/CdS heterostructure photodetectors. ACS Appl. Mater. Interfaces, 11, 40204-40213(2019).

    [37] Z. Rao, W. Liang, H. Huang, J. Ge, W. Wang, S. Pan. High sensitivity and rapid response ultraviolet photodetector of a tetragonal CsPbCl3 perovskite single crystal. Opt. Mater. Express, 10, 1374-1382(2020).

    [38] H. Zhou, J. Zeng, Z. Song, C. R. Grice, C. Chen, Z. Song, D. Zhao, H. Wang, Y. Yan. Self-powered all-inorganic perovskite microcrystal photodetectors with high detectivity. J. Phys. Chem. Lett., 9, 2043-2048(2018).

    Tools

    Get Citation

    Copy Citation Text

    Zihao Shuang, Hai Zhou, Dingjun Wu, Xuhui Zhang, Boao Xiao, Jinxia Duan, Hao Wang, "High-performance Ag2BiI5 Pb-free perovskite photodetector," Photonics Res. 10, 1886 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optoelectronics

    Received: Mar. 15, 2022

    Accepted: Jun. 9, 2022

    Published Online: Jul. 27, 2022

    The Author Email: Hai Zhou (hizhou@dgut.edu.cn), Hao Wang (wangh@hubu.edu.cn)

    DOI:10.1364/PRJ.452883

    Topics