Chinese Journal of Lasers, Volume. 51, Issue 7, 0701012(2024)
Laser‑Induced Discharge Plasma Extreme Ultraviolet Source
[1] Sayan S, Chakravorty K, Teramoto Y et al. Laser-assisted discharge produced plasma (LDP) EUV source for actinic patterned mask inspection (APMI)[J]. Proceedings of SPIE, 11609, 116090L(2021).
[2] Lin N, Yang W H, Chen Y Y et al. Research progress and development trend of extreme ultraviolet lithography source[J]. Laser & Optoelectronics Progress, 59, 0922002(2022).
[3] Sun H Y, Wang G D, Li X H et al. Study on 100 kHz repetitive frequency tin droplet targets[J]. Laser & Optoelectronics Progress, 60, 2314001(2023).
[4] Li Z G, Dou Y P, Xie Z et al. Characteristics of extreme ultraviolet emission from laser-produced plasma on structured Sn target[J]. Chinese Journal of Lasers, 48, 1601005(2021).
[5] Wu J Z, Xie Z, Dou Y P et al. Research progress of laser assisted discharge produce plasma extreme ultraviolet source[J]. Applied Physics, 9, 1-6(2019).
[6] Pankert J, Apetz R, Bergmann K et al. Integrating Philips’ extreme UV source in the alpha-tools[J]. Proceedings of SPIE, 5751, 260-271(2005).
[7] Teramoto Y, Santos B, Mertens G et al. High-radiance LDP source for mask inspection application[J]. Proceedings of SPIE, 9048, 904813(2014).
[9] Krücken T, Bergmann K, Juschkin L et al. Fundamentals and limits for the EUV emission of pinch plasma sources for EUV lithography[J]. Journal of Physics D: Applied Physics, 37, 3213-3224(2004).
[10] Borisov V M, Borisova G N, Vinokhodov A Y et al. Creation and investigation of powerful EUV sources (λ≈13.5 nm)[J]. Plasma Physics Reports, 36, 216-225(2010).
[11] Beyene G A, Tobin I, Juschkin L et al. Laser-assisted vacuum arc extreme ultraviolet source: a comparison of picosecond and nanosecond laser triggering[J]. Journal of Physics D: Applied Physics, 49, 225201(2016).
[12] Xie Z, Wu J Z, Dou Y P et al. Plasma dynamics in the initial stage of a laser-triggered discharge-plasma[J]. Journal of Applied Physics, 124, 213303(2018).
[13] Zhu Q, Yamada J, Kishi N et al. Investigation of the dynamics of the Z-pinch imploding plasma for a laser-assisted discharge-produced Sn plasma EUV source[J]. Journal of Physics D: Applied Physics, 44, 145203(2011).
[14] Watanabe M, Yamada J, Zhu Q S et al. Development of extreme ultraviolet radiation source using laser triggered vacuum spark discharge plasma[C], 1088, 188-191(2009).
[15] Lu P, Katsuki S, Tomimaru N et al. Dynamic characteristics of laser-assisted discharge plasmas for extreme ultraviolet light sources[J]. Japanese Journal of Applied Physics, 49, 096202(2010).
[16] Lim S, Kamohara T, Hosseini S H R et al. Dependence of current rise time on laser-triggered discharge plasma[J]. Journal of Physics D Applied Physics, 49, 295207(2016).
[17] Verbraak H, Küpper F, Jonkers J et al. Angular ion emission characteristics of a laser triggered tin vacuum arc as light source for extreme ultraviolet lithography[J]. Journal of Applied Physics, 108, 093304(2010).
[18] Xu Q, Deng X L, Tian H et al. Influence of pre-ionized plasma on the dynamics of a tin laser-triggered discharge-plasma[J]. Applied Sciences, 9, 4981(2019).
[19] Kruecken T. Plasma and radiation modelling of EUV sources for micro lithography[C], 901, 181-190(2007).
[20] Hassanein A, Sizyuk V A, Tolkach V I et al. HEIGHTS initial simulation of discharge produced plasma hydrodynamics and radiation transport for extreme ultraviolet lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 3, 130-138(2004).
[21] Zakharov V S, Juschkin L, Zakharov S V et al. Laser-initiated discharge produced plasma ablated from liquid metal electrodes[C](2012).
[22] Sasaki A, Nishihara K, Sunahara A et al. Modeling of atomic and plasmas processes in the LPP and LA-DPP EUV source[J]. Proceedings of SPIE, 7636, 76363D(2010).
[23] Masnavi M, Nakajima M, Hotta E et al. Estimation of optimum density and temperature for maximum efficiency of tin ions in Z discharge extreme ultraviolet sources[J]. Journal of Applied Physics, 101, 033306(2007).
[24] Tsygvintsev I P, Krukovskiy A Y, Gasilov V A et al. Numerical modeling of a pinch in a vacuum diode with laser ignition[J]. Mathematical Models and Computer Simulations, 8, 595-605(2016).
[25] Wu L. Investigation of the extreme ultraviolet radiation properties and wavelength calibration of laser-produced plasmas[D](2019).
[26] Zakharov S V, Zakharov V S, Choi P et al. Next generation of Z* modelling tool for high intensity EUV and soft X-ray plasma sources simulations[J]. Proceedings of SPIE, 7969, 796932(2011).
[27] Никифоров А Ф, Новиков В Г, Уваров В Б, Li G Z[M]. Calculation of radiation opacity and equation of state for high temperature plasma(2004).
[28] Grushin A S, Vichev I Y, Solomyannaya A D et al. THERMOS Toolkit: software package for radiative properties calculations of LTE and Non-LTE plasmas[C](2021).
[29] Florido R, Rodríguez R, Gil J M et al. Modeling of population kinetics of plasmas that are not in local thermodynamic equilibrium, using a versatile collisional-radiative model based on analytical rates[J]. Physical Review E, 80, 056402(2009).
[30] Zeng J L, Gao C, Yuan J M. Detailed investigations on radiative opacity and emissivity of tin plasmas in the extreme-ultraviolet region[J]. Physical Review E, 82, 026409(2010).
[31] Gao C, Liu Y P, Yan G P et al. Theoretical investigation on extreme ultraviolet radiative opacity and emissivity of Sn plasmas at local-thermodynamic equilibrium[J]. Acta Physica Sinica, 72, 183101(2023).
[32] Torretti F, Sheil J, Schupp R et al. Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography[J]. Nature Communications, 11, 2334(2020).
Get Citation
Copy Citation Text
Junwu Wang, Hongwen Xuan, Xinbing Wang, Vassily S. Zakharov. Laser‑Induced Discharge Plasma Extreme Ultraviolet Source[J]. Chinese Journal of Lasers, 2024, 51(7): 0701012
Category: laser devices and laser physics
Received: Dec. 7, 2023
Accepted: Jan. 16, 2024
Published Online: Apr. 11, 2024
The Author Email: Xuan Hongwen (xuanhw@aircas.ac.cn)
CSTR:32183.14.CJL231488