Laser & Infrared, Volume. 54, Issue 6, 980(2024)

Obstacle avoidance algorithm based on monocular vision and improved potential field

JI Yu-hang, CAI Wen-jing, LIU Xin, and WANG Li-he
Author Affiliations
  • CETC Electro-Optics Technology Co Ltd, Beijing 100015, China
  • show less
    References(16)

    [4] [4] Mujumdar A, Padhi R. Evolving philosophies on autonomous obstacle/collision avoidance of unmanned aerial vehicles[J]. Journal of Aerospace Computing Information & Communication, 2011, 8(2): 17-41.

    [5] [5] S Yan, F Pan. Research on route planning of AUV based on genetic algorithms[C]//2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence (ICUSAI), Xi'an, China, 2019: 184-187.

    [6] [6] Lim H S, Fan S, Chin C K H, et al. Constrained path planning of autonomous underwater vehicle using selectively-hybridized particle swarm optimization algorithms[C]//IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles.2020.

    [7] [7] Szczerba R J, Galkowski P. Robust algorithm for real-time route planning[J]. IEEE Transactions on Aerospace & Electronic Systems, 2000, 36(3): 869-878.

    [8] [8] Ganapathy V, Yun S C, Chien T W. Enhanced D* lite algorithm for autonomous mobile robot[J]. International Journal of Applied Science & Technology, 2011, 1(1): 58-74.

    [9] [9] Durand N. Constant speed optimal reciprocal collision avoidance[J]. Transportation Research Part C: Emerging Technologies, 2018, 96(NOV.): 366-379.

    [10] [10] X Yang, W Yang, H Zhang, et al. A new method for robot path planning based artificial potential field[C]//2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 2016: 1294-1299.

    [12] [12] Fu Qiang, Wang Jin, Gong Yue, et al. Obstacle avoidance of flapping-wing air vehicles based on optical flow and fuzzy control[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(2): 206-215.

    [18] [18] B Li, Y Wu. Path planning for UAV ground target tracking via deep reinforcement learning[J]. IEEE Access, 2020, (8): 29064-29074

    [19] [19] Yan C, Xiang X, Wang C. Towards real-time path planning through deep reinforcement learning for a UAV in dynamic environments[J]. J. Intell. Robot Syst.2020, 98: 297-309.

    [20] [20] Nieuwenhuisen M, Droeschel D, et al. Autonomous navigation for micro aerial vehicles in complex gnss-denied environments[J]. J. Intell. Robot. Sys., 2016, 84(1-4): 199-216.

    [21] [21] Iacono, M., Sgorbissa, A.. Path following and obstacle avoidance for an autonomous UAV usingadepth camera[J]. Robot. Auton. Syst., 2018, 106: 38-46.

    [22] [22] Cui, J. Q., Lai, S., Dong, X., et al. Autonomous navigationof UA V in foliage environment[J]. J. Intell. Robot. Syst., 2016, 84(1-4): 259-276.

    [26] [26] Zhang N, Nex F, Vosselman G, et al. Lite-Mono: a lightweight CNN and transformer architecture for self-supervised monocular depth estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, 2023: 18537-18546.

    [27] [27] Ali A, Touvron H, Caron M, et al. Xcit: Cross-covariance image transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 20014-20027.

    [28] [28] Eigen D, Puhrsch C, Fergus R. Depth map prediction from a single image using a multi-scale deep network[J]. Advances in Neural Information Processing Systems, 2014, 27: 1-9.

    Tools

    Get Citation

    Copy Citation Text

    JI Yu-hang, CAI Wen-jing, LIU Xin, WANG Li-he. Obstacle avoidance algorithm based on monocular vision and improved potential field[J]. Laser & Infrared, 2024, 54(6): 980

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 11, 2023

    Accepted: May. 21, 2025

    Published Online: May. 21, 2025

    The Author Email:

    DOI:10.3969/j.issn.1001-5078.2024.06.021

    Topics