Acta Optica Sinica, Volume. 44, Issue 20, 2017001(2024)

Interaction Between Latent Membrane Protein-1 and Vimentin Based on Quantitative Fluorescence Resonance Energy Transfer

Zhiwei Wu1,2, Xianzeng Zhang2, and Shusen Xie2、*
Author Affiliations
  • 1School of Physical and Information Engineering, Quanzhou Normal University, Quanzhou 362000, Fujian , China
  • 2College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, Fujian , China
  • show less
    References(45)

    [2] Li Z L, Zhou Z, Wu X et al. LMP1 promotes nasopharyngeal carcinoma metastasis through NTRK2-mediated anoikis resistance[J]. American Journal of Cancer Research, 10, 2083-2099(2020).

    [6] Lee D C W, Chua D T T, Wei W I et al. Induction of matrix metalloproteinases by Epstein-Barr virus latent membrane protein 1 isolated from nasopharyngeal carcinoma[J]. Biomedicine & Pharmacotherapy, 61, 520-526(2007).

    [8] Vuoriluoto K, Haugen H, Kiviluoto S et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer[J]. Oncogene, 30, 1436-1448(2011).

    [9] Abidine Y, Constantinescu A, Laurent V M et al. Mechanosensitivity of cancer cells in contact with soft substrates using AFM[J]. Biophysical Journal, 114, 1165-1175(2018).

    [10] Costigliola N, Ding L Y, Burckhardt C J et al. Vimentin fibers orient traction stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 5195-5200(2017).

    [11] Meckes D G, Jr, Menaker N F, Raab-Traub N. Epstein-Barr virus LMP1 modulates lipid raft microdomains and the vimentin cytoskeleton for signal transduction and transformation[J]. Journal of Virology, 87, 1301-1311(2013).

    [12] Fang W F, Zhang J W, Hong S D et al. EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: implications for oncotargeted therapy[J]. Oncotarget, 5, 12189-12202(2014).

    [14] Gavin A C, Maeda K, Kühner S. Recent advances in charting protein-protein interaction: mass spectrometry-based approaches[J]. Current Opinion in Biotechnology, 22, 42-49(2011).

    [17] Padilla-Parra S, Tramier M. FRET microscopy in the living cell: different approaches, strengths and weaknesses[J]. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 34, 369-376(2012).

    [18] Zhang L L. Spectral wide-field microscopic FRET imaging[D], 3-10(2015).

    [19] Yang F F, Du M Y, Wang X P et al. Interaction between Bax and Bcl-XL proteins confirmed by partial acceptor photobleaching-based FRET imaging[J]. Journal of Innovative Optical Health Sciences, 13, 2050011(2020).

    [21] Wu G, Yang F F, Cheng X C et al. Live-cell imaging analysis on the anti-apoptotic function of the Bcl-xL transmembrane carboxyl terminal domain[J]. Biochemical and Biophysical Research Communications, 639, 91-99(2023).

    [24] Mai Z H, Sun H, Yang F F et al. Bad is essential for Bcl-xL-enhanced Bax shuttling between mitochondria and cytosol[J]. The International Journal of Biochemistry & Cell Biology, 155, 106359(2023).

    [26] Melle C, Hoffmann B, Wiesenburg A et al. FLIM-FRET-based analysis of S100A11/annexin interactions in living cells[J]. FEBS Open Bio, 14, 626-642(2024).

    [29] Chen H M, Puhl H L, Koushik S V et al. Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells[J]. Biophysical Journal, 91, L39-L41(2006).

    [30] Zal T, Gascoigne N R J. Photobleaching-corrected FRET efficiency imaging of live cells[J]. Biophysical Journal, 86, 3923-3939(2004).

    [31] Elder A D, Domin A, Kaminski Schierle G S et al. A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission[J]. Journal of the Royal Society Interface, 6, S59-S81(2009).

    [32] Wang L X, Chen T S, Qu J L et al. Photobleaching-based quantitative analysis of fluorescence resonance energy transfer inside single living cell[J]. Journal of Fluorescence, 20, 27-35(2010).

    [33] Lin F R, Du M Y, Yang F F et al. Improved spectrometer-microscope for quantitative fluorescence resonance energy transfer measurement based on simultaneous spectral unmixing of excitation and emission spectra[J]. Journal of Biomedical Optics, 23, 016006(2018).

    [34] Su W H, Du M Y, Lin F R et al. Quantitative FRET measurement based on spectral unmixing of donor, acceptor and spontaneous excitation-emission spectra[J]. Journal of Biophotonics, 12, e201800314(2019).

    [35] Yin A, Zhai S X, Sun H et al. Robustness evaluation of quantitative fluorescence resonance energy transfer imaging methods in live cells[J]. Chinese Journal of Lasers, 48, 2107001(2021).

    [36] Xuan B T, Ghosh D, Jiang J et al. Vimentin filaments drive migratory persistence in polyploidal cancer cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 26756-26765(2020).

    [37] Yu H N, Zhang J W, Li H L et al. An empirical quantitative fluorescence resonance energy transfer method for multiple acceptors based on partial acceptor photobleaching[J]. Applied Physics Letters, 100, 253701(2012).

    [38] Thaler C, Koushik S V, Blank P S et al. Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer[J]. Biophysical Journal, 89, 2736-2749(2005).

    [39] Zhang J W, Li H, Chai L Y et al. Quantitative FRET measurement using emission-spectral unmixing with independent excitation crosstalk correction[J]. Journal of Microscopy, 257, 104-116(2015).

    [40] Onodera R, Motoyama K, Okamatsu A et al. Involvement of cholesterol depletion from lipid rafts in apoptosis induced by methyl-β-cyclodextrin[J]. International Journal of Pharmaceutics, 452, 116-123(2013).

    [41] Mollinedo F, Gajate C. Lipid rafts as major platforms for signaling regulation in cancer[J]. Advances in Biological Regulation, 57, 130-146(2015).

    [42] Yamamoto Y, Tomiyama A, Sasaki N et al. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft[J]. Biochemical and Biophysical Research Communications, 495, 1292-1299(2018).

    [43] Liu J. The mechanism of the GABAB receptor mediated IGF-1Receptor transactivation through lipid rafts[D], 3-6(2012).

    [44] Becher A, White J H, McIlhinney R A J. The γ-aminobutyric acid receptor B, but not the metabotropic glutamate receptor type-1, associates with lipid rafts in the rat cerebellum[J]. Journal of Neurochemistry, 79, 787-795(2001).

    Tools

    Get Citation

    Copy Citation Text

    Zhiwei Wu, Xianzeng Zhang, Shusen Xie. Interaction Between Latent Membrane Protein-1 and Vimentin Based on Quantitative Fluorescence Resonance Energy Transfer[J]. Acta Optica Sinica, 2024, 44(20): 2017001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical optics and biotechnology

    Received: Apr. 25, 2024

    Accepted: May. 28, 2024

    Published Online: Oct. 12, 2024

    The Author Email: Shusen Xie (ssxie@fjnu.edu.cn)

    DOI:10.3788/AOS240917

    CSTR:32393.14.AOS240917

    Topics