Chinese Journal of Lasers, Volume. 48, Issue 8, 0802018(2021)

Recent Progress in Research and Application of Nano-Manipulation Technologies

Genwang Wang1,2, Yanchao Guan1,2, Yang Wang1,2, Ye Ding1,2、**, and Lijun Yang1,2、*
Author Affiliations
  • 1Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • 2School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • show less
    References(81)

    [2] Gong S, Cheng W L. One-dimensional nanomaterials for soft electronics[J]. Advanced Electronic Materials, 3, 1600314(2017).

    [3] Cui J L, Cheng Y, Zhang J W et al. Femtosecond laser irradiation of carbon nanotubes to metal electrodes[J]. Applied Sciences, 9, 476(2019).

    [4] Lu X W, Yang L J, Yang Z. Photothermal sensing of nano-devices made of graphene materials[J]. Sensors, 20, 3671(2020).

    [5] Wang G W, Hou C J, Long H et al. Electronic and optoelectronic nanodevices based on two-dimensional semiconductor materials[J]. Acta Physico-Chimica Sinica, 35, 1319-1340(2019).

    [7] D'Orlando A, Bayle M, Louarn G et al. AFM-nano manipulation of plasmonic molecules used as “nano-lens” to enhance Raman of individual nano-objects[J]. Materials, 12, 1372(2019).

    [8] Eigler D M, Schweizer E K. Positioning single atoms with a scanning tunnelling microscope[J]. Nature, 344, 524-526(1990).

    [11] Ratchford D, Shafiei F, Kim S et al. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle[J]. Nano Letters, 11, 1049-1054(2011).

    [14] Xu W N, Qin Z, Chen C T et al. Ultrathin thermoresponsive self-folding 3D graphene[J]. Science Advances, 3, e1701084(2017).

    [16] Junno T, Deppert K, Montelius L et al. Controlled manipulation of nanoparticles with an atomic force microscope[J]. Applied Physics Letters, 66, 3627-3629(1995).

    [18] Whitman L J, Stroscio J A, Dragoset R A et al. Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope[J]. Science, 251, 1206-1210(1991).

    [19] Avouris P. Manipulation of matter at the atomic and molecular levels[J]. Accounts of Chemical Research, 28, 95-102(1995).

    [20] Liu B H. Basic research on integrated nanomanipulation using fiber probe-based near-field optical tweezers and AFM[D]. Harbin: Harbin Institute of Technology, 7-8(2011).

    [26] Wang Z Y, Liu L Q, Wang Y C et al. Stable nanomanipulation using atomic force microscopy: a virtual nanohand for a robotic nanomanipulation system[J]. IEEE Nanotechnology Magazine, 7, 6-11(2013).

    [27] Xie H, Haliyo D S, Régnier S. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly[J]. Nanotechnology, 20, 215301(2009).

    [28] Park K J, Huh J H, Jung D W et al. Assembly of “3D” plasmonic clusters by “2D” AFM nanomanipulation of highly uniform and smooth gold nanospheres[J]. Scientific Reports, 7, 6045(2017).

    [29] Chen H, Zhang X L, Zhang Y Y et al. Atomically precise, custom-design origami graphene nanostructures[J]. Science, 365, 1036-1040(2019).

    [30] Vasić B, Matković A, Gajić R et al. Wear properties of graphene edges probed by atomic force microscopy based lateral manipulation[J]. Carbon, 107, 723-732(2016).

    [31] van der Lit J, Jacobse P H, Vanmaekelbergh D et al. Bending and buckling of narrow armchair graphene nanoribbons via STM manipulation[J]. New Journal of Physics, 17, 053013(2015).

    [32] Masuo S, Kanetaka K, Sato R et al. Direct observation of multiphoton emission enhancement from a single quantum dot using AFM manipulation of a cubic gold nanoparticle[J]. ACS Photonics, 3, 109-116(2016).

    [34] Fukuda T, Arai F, Dong L. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations[J]. Proceedings of the IEEE, 91, 1803-1818(2003).

    [35] Fukuda T, Arai F, Dong L X. Nanorobotic systems[J]. International Journal of Advanced Robotic Systems, 2, 28(2005).

    [40] Zimmermann S, Tiemerding T, Fatikow S. Automated robotic manipulation of individual colloidal particles using vision-based control[J]. IEEE/ASME Transactions on Mechatronics, 20, 2031-2038(2015).

    [42] Yang Z, Wang Y Q, Yang B et al. Mechatronic development and vision feedback control of a nanorobotics manipulation system inside SEM for nanodevice assembly[J]. Sensors, 16, 1479(2016).

    [43] Mølhave K, Wich T, Kortschack A et al. Pick-and-place nanomanipulation using microfabricated grippers[J]. Nanotechnology, 17, 2434-2441(2006).

    [46] Carlson K, Andersen K N, Eichorn V et al. A carbon nanofibre scanning probe assembled using an electrothermal microgripper[J]. Nanotechnology, 18, 345501-345507(2007).

    [47] Zhang Y L, Zhang Y, Ru C H et al. A load-lock-compatible nanomanipulation system for scanning electron microscope[J]. IEEE/ASME Transactions on Mechatronics, 18, 230-237(2013).

    [50] Zhou C, Gong Z, Chen B K et al. A closed-loop controlled nanomanipulation system for probing nanostructures inside scanning electron microscopes[J]. IEEE/ASME Transactions on Mechatronics, 21, 1233-1241(2016).

    [51] Shen Y J, Nakajima M, Zhang Z H et al. Dynamic force characterization microscopy based on integrated nanorobotic AFM and SEM system for detachment process study[J]. IEEE/ASME Transactions on Mechatronics, 20, 3009-3017(2015).

    [52] Fatikow S, Eichhorn V, Bartenwerfer M. Nanomaterials enter the silicon-based CMOS era: nanorobotic technologies for nanoelectronic devices[J]. IEEE Nanotechnology Magazine, 6, 14-18(2012).

    [53] Dong L X, Arai F, Fukuda T. Destructive constructions of nanostructures with carbon nanotubes through nanorobotic manipulation[J]. IEEE/ASME Transactions on Mechatronics, 9, 350-357(2004).

    [58] Shi Q, Yang Z, Guo Y N et al. A vision-based automated manipulation system for the pick-up of carbon nanotubes[J]. IEEE/ASME Transactions on Mechatronics, 22, 845-854(2017).

    [61] Yu N, Shi Q, Nakajima M et al. 3D assembly of carbon nanotubes for fabrication of field-effect transistors through nanomanipulation and electron-beam-induced deposition[J]. Journal of Micromechanics and Microengineering, 27, 105007(2017).

    [62] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).

    [67] Jauffred L, Taheri S M R, Schmitt R et al. Optical trapping of gold nanoparticles in air[J]. Nano Letters, 15, 4713-4719(2015).

    [68] Liu B H, Yang L J, Wang Y. Optical trapping force combining an optical fiber probe and an AFM metallic probe[J]. Optics Express, 19, 3703-3714(2011).

    [69] Lu X W, Yang L J, Xie H et al. Simulations of the near-field enhancement on AFM tip irradiated by annular laser beam[J]. IEEE Transactions on Nanotechnology, 18, 979-982(2019).

    [76] Pang Y J, Gordon R. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film[J]. Nano Letters, 11, 3763-3767(2011).

    [79] Anastasiadi G, Leonard M, Paterson L et al. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation[J]. Optics Express, 26, 3557-3567(2018).

    Tools

    Get Citation

    Copy Citation Text

    Genwang Wang, Yanchao Guan, Yang Wang, Ye Ding, Lijun Yang. Recent Progress in Research and Application of Nano-Manipulation Technologies[J]. Chinese Journal of Lasers, 2021, 48(8): 0802018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Dec. 1, 2020

    Accepted: Feb. 23, 2021

    Published Online: Apr. 12, 2021

    The Author Email: Ding Ye (dy1992hit@hit.edu.cn), Yang Lijun (yljtj@hit.edu.cn)

    DOI:10.3788/CJL202148.0802018

    Topics